A small chunk of material (the "tan cube") is placed above a solenoid. It magnetizes, weakly, as shown by small arrows inside. What kind of material must the cube be?

- A. Dielectric
- B. Conductor
- C. Diamagnetic
- D. Paramagnetic
- E. Ferromagnetic

ANNOUNCEMENTS

- 3 Classes left!
 - Today and Wednesday: normal lecture (finish Ch. 6)
 - Friday: conceptual assessment
 - Participation? Drop second lowest homework grade
- Final Exam
 - Thursday 12:45-2:45pm in this room
 - Details on Friday!

A solid cylinder has uniform magnetization \mathbf{M} throughout the volume in the x direction as shown. What's the magnitude of the total magnetic dipole moment of the cylinder?

A solid cylinder has uniform magnetization \mathbf{M} throughout the volume in the z direction as shown. Where do bound currents show up?

- A. Everywhere
- B. Volume only, not surface
- C. Top/bottom surface only
- D. Side (rounded) surface only
- E. All surfaces, but not volume

A solid cylinder has uniform magnetization **M** throughout the volume in the *x* direction as shown. Where do bound currents show up?

- A. Top/bottom surface only
- B. Side (rounded) surface only
- C. Everywhere
- D. Top/bottom, and parts of (but not all of) side surface (but not in the volume)
- E. Something different/other combination!

A solid cylinder has uniform magnetization ${f M}$ throughout the volume in the ϕ direction as shown. In which direction does the bound surface current flow on the (curved) sides?

- A. There is no bound surface current.
- B. The current flows in the $\pm\phi$ direction.
- C. The current flows in the $\pm s$ direction.
- D. The current flows in the $\pm z$ direction.
- E. The direction is more complicated.

A sphere has uniform magnetization \mathbf{M} in the +z direction. Which formula is correct for this surface current?

> A. $M \sin \theta \hat{\theta}$ B. $M \sin \theta \hat{\phi}$ C. $M \cos \phi \hat{\theta}$ D. $M \cos \phi \hat{\phi}$ E. Something else

