The vector potential A due to a long straight
wire with current I along the z-axis is in the
direction parallel to: \uparrow zA. \hat{z}
B. $\hat{\phi}$ (azimuthal)
C. \hat{s} (radial)I
A = ?Assume the Coulomb Gauge

ANNOUNCEMENTS

- Homework 10 (it's long; you started it, right?)
 - Due this Friday
- Final Homework is due Friday the 9th
 - Magnetic dipoles and some magnetic matter
- Final Exam (20%)
 - 12:45pm-2:45pm on Thursday the 15th in this room
- Detailed grade projections by Monday 12th
 - w/ clicker bonus, but not HW 11
- SIRS are open
 - Please fill out; it helps shape departmental offerings

Consider a fat wire with radius a with uniform current I_0 that runs along the +z-axis. We can compute the vector potential due to this wire directly. What is **J**?

> A. $I_0/(2\pi)$ B. $I_0/(\pi a^2)$ C. $I_0/(2\pi a)\hat{z}$ D. $I_0/(\pi a^2)\hat{z}$ E. Something else!?

Consider a fat wire with radius a with uniform current I_0 that

runs along the +*z*-axis. Given $\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{\Re} d\tau'$, which components of \mathbf{A} need to be computed?

A. All of them B. Just A_x C. Just A_y D. Just A_z E. Some combination Consider line of charge with uniform charge density, $\lambda = \rho \pi a^2$. What is the magnitude of the electric field outside of the line charge (at a distance s > a)?

> A. $E = \lambda/(4\pi\varepsilon_0 s^2)$ B. $E = \lambda/(2\pi\varepsilon_0 s^2)$ C. $E = \lambda/(4\pi\varepsilon_0 s)$ D. $E = \lambda/(2\pi\varepsilon_0 s)$ E. Something else?!

> > Use Gauss' Law

Consider a shell of charge with surface charge σ that is rotating at angular frequency of ω . Which of the expressions below describe the surface current, **K**, that is observed in the fixed frame.

> A. $\sigma \omega$ B. $\sigma \dot{\mathbf{r}}$ C. $\sigma \mathbf{r} \times \omega$ D. $\sigma \omega \times \mathbf{r}$ E. Something else?