ANNOUNCEMENTS

The vector potential A due to a long straight wire with current I along the z-axis is in the direction parallel to:
A. \hat{z}
B. $\hat{\phi}$ (azimuthal)
C. \hat{s} (radial)

Assume the Coulomb Gauge

- Homework 10 (it's long; you started it, right?)
- Due this Friday
- Final Homework is due Friday the 9th
- Magnetic dipoles and some magnetic matter
- Final Exam (20\%)
- 12:45pm-2:45pm on Thursday the 15th in this room
- Detailed grade projections by Monday 12th
- w/ clicker bonus, but not HW 11
- SIRS are open
- Please fill out; it helps shape departmental offerings

Consider a fat wire with radius a with uniform current I_{0} that runs along the $+z$-axis. Given $\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\mathfrak{R}} d \tau^{\prime}$, which components of \mathbf{A} need to be computed?
A. All of them
B. Just A_{x}
C. Just A_{y}
D. Just A_{z}
E. Some combination

Consider line of charge with uniform charge density, $\lambda=\rho \pi a^{2}$. What is the magnitude of the electric field outside of the line charge (at a distance $s>a$)?
A. $E=\lambda /\left(4 \pi \varepsilon_{0} s^{2}\right)$
B. $E=\lambda /\left(2 \pi \varepsilon_{0} s^{2}\right)$
C. $E=\lambda /\left(4 \pi \varepsilon_{0} s\right)$
D. $E=\lambda /\left(2 \pi \varepsilon_{0} s\right)$
E. Something else?!

Use Gauss' Law

Consider a shell of charge with surface charge σ that is rotating at angular frequency of ω. Which of the expressions below describe the surface current, \mathbf{K}, that is observed in
the fixed frame.
A. $\sigma \omega$
B. $\sigma \dot{\mathbf{r}}$
C. $\sigma \mathbf{r} \times \omega$
D. $\sigma \omega \times \mathbf{r}$
E. Something else?

