What is $\oint \mathbf{B} \cdot d \mathbf{l}$ around this purple (dashed) Amperian loop?

A. $\mu_{0}\left(\left|I_{2}\right|+\left|I_{1}\right|\right)$
B. $\mu_{0}\left(\left|I_{2}\right|-\left|I_{1}\right|\right)$
C. $\mu_{0}\left(\left|I_{2}\right|+\left|I_{1}\right| \sin \theta\right)$
D. $\mu_{0}\left(\left|I_{2}\right|-\left|I_{1}\right| \sin \theta\right)$
E. $\mu_{0}\left(\left|I_{2}\right|+\left|I_{1}\right| \cos \theta\right)$

An infinite solenoid with surface current density K is oriented along the z-axis. Apply Ampere's Law to the rectangular imaginary loop in the $y z$ plane shown. What does this tell you about B_{z}, the z-component of the B field outside the solenoid?
A. B_{z} is constant outside
B. B_{z} is zero outside
C. B_{z} is not constant outside
D. It tells you nothing about B_{z}

An infinite solenoid with surface current density K is oriented along the z-axis. To use Ampere's Law, we need to argue what we think $\mathbf{B}(\mathbf{r})$ depends on and which way it points.
For this solenoid, $\mathbf{B}(\mathbf{r})=$
A. $B(z) \hat{z}$
B. $B(z) \hat{\phi}$
C. $B(s) \hat{z}$
D. $B(s) \hat{\phi}$
E. Something else?

An infinite solenoid with surface current density K is oriented along the z-axis. Apply Ampere's Law to the rectangular imaginary loop in the $y z$ plane shown. We can safely assume that $B(s \rightarrow \infty)=0$. What does this
tell you about the B-field outside the solenoid?
A. $|\mathbf{B}|$ is a small non-zero constant outside
B. $|\mathbf{B}|$ is zero outside

C. $|\mathbf{B}|$ is not constant outside
D. We still don't know anything about $|\mathbf{B}|$

Which Amperian loop are useful to learn about $B(x, y, z)$
somewhere?
What do we expect $\mathbf{B}(\mathbf{r})$ to look like for the infinite sheet of current shown below?
A. $B(x) \hat{x}$
B. $B(z) \hat{x}$
C. $B(x) \hat{z}$
D. $B(z) \hat{z}$
E. Something else

E. More than 1

Gauss' Law for magnetism, $\nabla \cdot \mathbf{B}=0$ suggests we can generate a potential for \mathbf{B}. What form should the definition of this potential take (Φ and \mathbf{A} are placeholder scalar and vector functions, respectively)?
A. $\mathbf{B}=\nabla \Phi$
B. $\mathbf{B}=\nabla \times \Phi$
C. $\mathbf{B}=\nabla \cdot \mathbf{A}$
D. $\mathbf{B}=\nabla \times \mathbf{A}$
E. Something else?!

