What do you expect for direction of $\mathbf{B}(P)$? How about direction of $d \mathbf{B}(P)$ generated JUST by the segment of current $d \mathbf{l}$ in red?

A. $\mathbf{B}(P)$ in plane of page, ditto for $d \mathbf{B}(P$, by red)
B. $\mathbf{B}(P)$ into page, $d \mathbf{B}(P$, by red $)$ into page
C. $\mathbf{B}(P)$ into page, $d \mathbf{B}(P$, by red) out of page
D. $\mathbf{B}(P)$ complicated, ditto for $d \mathbf{B}(P$, by red)
E. Something else!!

What is the magnitude of $\frac{d \mathbf{l} \times \hat{\mathfrak{R}}}{\mathfrak{R}^{2}}$?
A. $\frac{d l \sin \phi}{z^{2}}$
B. $\frac{d l}{z^{2}}$
C. $\frac{d l \sin \phi}{z^{2}+a^{2}}$
D. $\frac{d l}{z^{2}+a^{2}}$
E. something else!

ANNOUNCEMENTS

- Danny out of town this Wednesday; Dennis will lecture
- Homework 9 due this Friday
- Homework 10 due Dec. 2nd (after Thanksgiving holiday)
- No help session week of Thanksgiving
- But, we will have class on Wednesday

What is $d \mathbf{B}_{z}$ (the contribution to the vertical component of \mathbf{B} from this $d \mathbf{l}$ segment?)
A. $\frac{d l}{z^{2}+a^{2}} \frac{a}{\sqrt{z^{2}+a^{2}}}$
B. $\frac{d l}{z^{2}+a^{2}}$
C. $\frac{z^{2}+a^{2}}{z^{2}+a^{2}} \frac{z}{\sqrt{z^{2}+a^{2}}}$
D. $\frac{d l \cos \phi}{\sqrt{z^{2}+a^{2}}}$

I have two very long, parallel wires each carrying a current I_{1} and I_{2}, respectively. In which direction is the force on the wire with the current I_{2} ?
A. Up
B. Down
C. Right
D. Left
E. Into or out of the page

