GRADE DISTRIBUTION

A negative charge $(-q)$ is moving in the $+x$ direction when it encounters a region of constant magnetic field pointing in the $-y$ direction. Which is the direction of the initial net force on the charge?

$$
\begin{aligned}
& \text { A. }+y \\
& \text { B. }-y \\
& \text { C. }+z \\
& \text { D. }-z \\
& \text { E. ??? }
\end{aligned}
$$

MAGNETOSTATICS

A proton $(q=+e)$ is released from rest in a uniform \mathbf{E} and uniform B. Epoints up, \mathbf{B} points into the page. Which of the paths will the proton initially follow?

E. It will remain stationary

A + charged particle moving up (speed v) enters a region with uniform \mathbf{B} (left) and uniform \mathbf{E} (into page). What's the direction of $\mathbf{F}_{\text {net }}$ on the particle, at the instant it enters the region?

A proton (speed v) enters a region of
uniform B. v makes an angle θ with \mathbf{B}. What is the subsequent path of the
proton?

A. Helical
B. Straight line
C. Circular motion, \perp to page. (plane of circle is \perp to \mathbf{B})
D. Circular motion, \perp to page. (plane of circle at angle θ w.r.t. B)
E. Impossible. \mathbf{v} should always be \perp to \mathbf{B}

