A negative charge (-q) is moving in the +x direction when it encounters a region of constant magnetic field pointing in the -y direction. Which is the direction of the initial net force on the charge?

A. + <i>y</i>	
В. — у	
C. + <i>z</i>	
D. <i>−z</i>	
E. ???	

GRADE DISTRIBUTION

MAGNETOSTATICS

A proton (q = +e) is released from rest in a uniform **E** and uniform **B**. **E** points up, **B** points into the page. Which of the paths will the proton initially follow?

E. It will remain stationary

A + charged particle moving up (speed v) enters a region with uniform **B** (left) and uniform **E** (into page). What's the direction of \mathbf{F}_{net} on the particle, at the instant it enters the region?

A. To the left	symbols	⊗⊗⊗≈₹
B. Into the page	⊗Ē	$\overset{\frown}{\otimes} \otimes \otimes \overset{\frown}{\otimes}$
C. Out of the page	←B	$\bigotimes \otimes \otimes \otimes$
D. No net force		$\bigotimes \bigotimes \bigotimes \bigotimes \overrightarrow{B}$
E. Not enough information		$\hat{\vec{v}}$
		÷

A proton (speed v) enters a region of uniform **B**. v makes an angle θ with **B**. What is the subsequent path of the proton?

- A. Helical
- B. Straight line
- C. Circular motion, \perp to page. (plane of circle is \perp to B)
- D. Circular motion, \perp to page. (plane of circle at angle θ w.r.t. **B**)
- E. Impossible. ${f v}$ should always be ot to ${f B}$