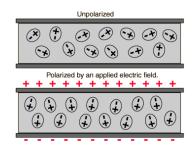
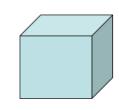
Consider a single point charge at the origin. It will have ONLY a monopole contribution to the potential at a location

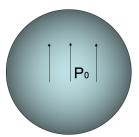

$$\mathbf{r} = \langle x, y, z \rangle.$$

As we have seen, if we move the charge to another location (e.g., $\mathbf{r'} = \langle 0, 0, d \rangle$), the distribution now has a dipole contribution to the potential at \mathbf{r} !

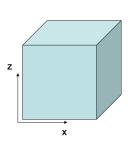

What the hell is going on here?

- A. It's just how the math works out. Nothing has changed physically at ${f r}.$
- B. There is something different about the field at **r** and the potential is showing us that.
- C. I'm not sure how to resolve this problem.

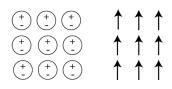
POLARIZATION



A stationary point charge +Q is near a block of polarization material (a linear dielectric). The net electrostatic force on the block \oplus due to the point charge is:


A. attractive (to the left)B. repulsive (to the right)C. zero

The sphere below (radius a) has uniform polarization \mathbf{P}_0 , which points in the +zdirection. What is the total dipole moment of this sphere?



A. zero B. $\mathbf{P}_0 a^3$ C. $4\pi a^3 \mathbf{P}_0/3$ D. \mathbf{P}_0 E. None of these/must be more complicated The cube below (side a) has uniform polarization \mathbf{P}_0 , which points in the +zdirection. What is the total dipole moment of this cube?

> A. zero B. $a^{3} P_{0}$ C. P_{0} D. P_{0}/a^{3} E. $2P_{0}a^{2}$

In the following case, is the bound surface and volume charge zero or nonzero?

Physical dipoles idealized dipoles

A.
$$\sigma_b = 0, \rho_b \neq 0$$

B. $\sigma_b \neq 0, \rho_b \neq 0$
C. $\sigma_b = 0, \rho_b = 0$
D. $\sigma_b \neq 0, \rho_b = 0$

In the following case, is the bound surface and volume charge zero or nonzero?

$\begin{pmatrix} + \\ \bullet \end{pmatrix} \begin{pmatrix} + \\ \bullet \end{pmatrix} \begin{pmatrix} + \\ \bullet \end{pmatrix}$	↑ ↑ ↑
$\begin{pmatrix} +\\ -\end{pmatrix} \begin{pmatrix} +\\ -\end{pmatrix} \begin{pmatrix} +\\ -\end{pmatrix}$	\uparrow \uparrow \uparrow
± ± ±	\uparrow \uparrow \uparrow
Physical dipoles	idealized dipoles
A. $\sigma_b = 0, \rho_b \neq 0$	

A.
$$\sigma_b = 0, \rho_b \neq 0$$

B. $\sigma_b \neq 0, \rho_b \neq 0$
C. $\sigma_b = 0, \rho_b = 0$
D. $\sigma_b \neq 0, \rho_b = 0$