MULTIPOLE EXPANSION

Two charges are positioned as shown to the left. The relative position vector between them is \mathbf{d}. What is the dipole moment of this configuration?

$$
\sum_{i} q_{i} \mathbf{r}_{i}
$$

A. $+q \mathbf{d}$
B. $-q \mathbf{d}$
C. Zero
D. None of these; it's more complicated than before!

Multipole Expansion of the Power Spectrum of CMBR

For a dipole at the origin pointing in the z-direction, we have derived:

$$
\mathbf{E}_{d i p}(\mathbf{r})=\frac{p}{4 \pi \varepsilon_{0} r^{3}}(2 \cos \theta \hat{\mathbf{r}}+\sin \theta \hat{\theta})
$$

For the dipole $\mathbf{p}=q \mathbf{d}$ shown, what does the formula predict for the direction of $\mathbf{E}(\mathbf{r}=0)$?
A. Down

B. Up
C. Some other direction
D. The formula doesn't apply

IDEAL VS. REAL DIPOLE

$$
\mathbf{p}=\sum_{i} q_{i} \mathbf{r}_{i}
$$

What is the magnitude of the dipole moment of this charge distribution?
A. qd
B. $2 q d$
C. 3qd
D. 4qd
E. It's not determined

$$
\mathbf{p}=\sum_{i} q_{i} \mathbf{r}_{i}
$$

What is the dipole moment of this system?
(BTW, it is NOT overall neutral!)
A. $q \mathbf{d}$
B. $2 q \mathrm{~d}$
C. $\frac{3}{2} q \mathbf{d}$
D. $3 q \mathbf{d}$
E. Someting else (or not defined)

