Given $V_0(\theta) = \sum_l C_l P_l(\cos \theta)$, we want to get to the integral:

$$\int_{-1}^{+1} P_l(u) P_m(u) du = \frac{2}{2+1} \text{ (for } l = m)$$

we can do this by multiplying both sides by:

- A. $P_m(\cos\theta)$
- B. $P_m(\sin \theta)$
- C. $P_m(\cos\theta)\sin\theta$
- D. $P_m(\sin \theta) \cos \theta$
- $E. P_m(\sin \theta) \sin \theta$

L. Jonneuming clac.

$$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$

Suppose V on a spherical shell is:

$$V(R,\theta) = V_0 \left(1 + \cos^2 \theta \right)$$

Which terms do you expect to appear when finding **V(outside)**?

- A. Many A_l terms (but no B_l 's)
- B. Many B_l terms (but no A_l 's)
- C. Just A_0 and A_2
- D. Just B_0 and B_2
- E. Something else!

$$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$

Suppose V on a spherical shell is:

$$V(R,\theta) = V_0 \left(1 + \cos^2 \theta \right)$$

Which terms do you expect to appear when finding **V(inside)**?

- A. Many A_l terms (but no B_l 's)
- B. Many B_l terms (but no A_l 's)
- C. Just A_0 and A_2
- D. Just B_0 and B_2
- E. Something else!

L. Jonneuming Clack

How many boundary conditions (on the potential V) do you use to find V inside the spherical plastic shell?

- A. 1
- B. 2
- C. 3
- D. 4
- E. It depends on $V_0(\theta)$

