Given $V_{0}(\theta)=\sum_{l} C_{l} P_{l}(\cos \theta)$, we want to get to the integral:
$\int_{-1}^{+1} P_{l}(u) P_{m}(u) d u=\frac{2}{2+1}($ for $l=m)$ we can do this by multiplying both sides by:
A. $P_{m}(\cos \theta)$
B. $P_{m}(\sin \theta)$
C. $P_{m}(\cos \theta) \sin \theta$
D. $P_{m}(\sin \theta) \cos \theta$
E. $P_{m}(\sin \theta) \sin \theta$

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

Suppose V on a spherical shell is:

$$
V(R, \theta)=V_{0}\left(1+\cos ^{2} \theta\right)
$$

Which terms do you expect to appear when finding V(outside)?
A. Many A_{l} terms (but no B_{l} 's)
B. Many B_{l} terms (but no A_{l} 's)
C. Just A_{0} and A_{2}
D. Just B_{0} and B_{2}
E. Something else!

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

Suppose V on a spherical shell is:

$$
V(R, \theta)=V_{0}\left(1+\cos ^{2} \theta\right)
$$

Which terms do you expect to appear when finding V(inside)?
A. Many A_{l} terms (but no B_{l} 's)
B. Many B_{l} terms (but no A_{l} 's)
C. Just A_{0} and A_{2}
D. Just B_{0} and B_{2}
E. Something else!

How many boundary conditions (on the potential V) do you use to find V inside the spherical plastic shell?
A. 1
B. 2
C. 3
D. 4
E. It depends on $V_{0}(\theta)$

