## EXACT SOLUTIONS:

Given the two diff. eq's :

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=C_{1} \quad \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=C_{2}
$$

where $C_{1}+C_{2}=0$. Given the boundary conditions in the figure, which coordinate should be assigned to the negative constant (and thus the sinusoidal solutions)?
A. $x$
B. y
C. $C_{1}=C_{2}=0$ here
D. It doesn't matter.


## SEPARATION OF VARIABLES (SPHERICAL)



$$
V(x, y)=\sum_{n=1}^{\infty} \frac{4 V_{0}}{n \pi} \frac{1}{\cosh \left(\frac{n \pi}{2}\right)} \cosh \left(\frac{n \pi x}{a}\right) \sin \left(\frac{n \pi y}{a}\right)
$$

## APPROXIMATE SOLUTIONS:

(1 TERM; 20 TERMS)


$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

$V$ everywhere on a spherical shell is a given constant, i.e.
$V(R, \theta)=V_{0}$. There are no charges inside the sphere.
Which terms do you expect to appear when finding V(inside)?
A. Many $A_{l}$ terms (but no $B_{l}{ }^{\prime} \mathrm{s}$ )
B. Many $B_{l}$ terms (but no $A_{l}$ 's)
C. Just $A_{0}$
D. Just $B_{0}$
E. Something else!

