Given the two diff. eq's:

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=C_{1} \quad \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=C_{2}
$$

where $C_{1}+C_{2}=0$. Given the boundary conditions in the figure, which coordinate should be assigned to the negative
constant (and thus the sinusoidal solutions)?
A. x
B. y
C. $C_{1}=C_{2}=0$ here
D. It doesn't matter.

Given the two diff. eq's:

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=C_{1} \quad \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=C_{2}
$$

where $C_{1}+C_{2}=0$. Given the boundary conditions in the figure, which coordinate should be assigned to the negative constant (and thus the sinusoidal solutions)?
A. x
B. y
C. $C_{1}=C_{2}=0$ here
D. It doesn't matter.

ANNOUNCEMENTS

- Exam 1 graded
- Returned at the end of class today (Avg. 73; Median. 76)
- Sent out individual grade reports on Saturday
- Please check that your grades make sense to you!
- Homework 5 is due on Friday
- It's a bit longer...start early!

When does $\sin (k a) e^{-k y}$ vanish?
A. $k=0$
B. $k=\pi /(2 a)$
C. $k=\pi / a$
D. A and C
E. A, B, C

Suppose $V_{1}(r)$ and $V_{2}(r)$ are linearly independent functions which both solve Laplace's equation, $\nabla^{2} V=0$.

Does $a V_{1}(r)+b V_{2}(r)$ also solve it (with a and b constants)?
A. Yes. The Laplacian is a linear operator
B. No. The uniqueness theorem says this scenario is impossible, there are never two independent solutions!
C. It is a definite yes or no, but the reasons given above just aren't right!
D. It depends...

SEPARATION OF VARIABLES (SPHERICAL)

What is the value of $\int_{0}^{2 \pi} \sin (2 x) \sin (3 x) d x$?
A. Zero
B. π
C. 2π
D. other
E. I need resources to do an integral like this!

Given $\nabla^{2} V=0$ in Cartesian coords, we separated $V(x, y, z)=X(x) Y(y) Z(z)$. Will this approach work in spherical coordinates, i.e. can we separate

$$
V(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi) ?
$$

A. Sure.
B. Not quite - the angular components cannot be isolated, e.g., $f(r, \theta, \phi)=R(r) Y(\theta, \phi)$
C. It won't work at all because the spherical form of Laplace's Equation has cross terms in it (see the front cover of Griffiths)

