I feel that Exam 1 was a fair assessment.
A. Strongly Agree
B. Agree
C. Neither Agree/Disagree
D. Disagree
E. Strongly Disagree

If you put a positive test charge at the center of this cube of charges, could it be in stable equilibrium?
A. Yes
B. No
C. ???

I feel that Exam 1 was aligned with what we have been doing (in class and on homework).
A. Strongly Agree
B. Agree
C. Neither Agree/Disagree
D. Disagree
E. Strongly Disagree

SEPARATION OF VARIABLES (CARTESIAN)

Say you have three functions $f(x), g(y)$, and $h(z) \cdot f(x)$ depends on x but not on y or $z \cdot g(y)$ depends on y but not on x or $z . h(z)$ depends on z but not on x or y.
If $f(x)+g(y)+h(z)=0$ for all x, y, z, then:
A. All three functions are constants (i.e. they do not depend on x, y, z at all.)
B. At least one of these functions has to be zero everywhere.
C. All of these functions have to be zero everywhere.
D. All three functions have to be linear functions in x, y, or z respectively (such as $f(x)=a x+b$)

Our example problem has the following boundary conditions:

- $V(0, y>0)=0 ; V(a, y>0)=0$
- $V\left(x_{0 \rightarrow a}, y=0\right)=V_{0} ; V(x, y \rightarrow \infty)=0$

If $X^{\prime \prime}=c_{1} X$ and $Y^{\prime \prime}=c_{2} Y$ with $c_{1}+c_{2}=0$, which is constant is positive?
A. c_{1}
B. c_{2}
C. It doesn't matter either can be

If our general solution contains the function,

$$
X(x)=A e^{\sqrt{c} x}+B e^{-\sqrt{c} x}
$$

What does our solution look like if $c<0$; what about if

$$
c>0 ?
$$

A. Exponential; Sinusoidal
B. Sinusoidal; Exponential
C. Both Exponential
D. Both Sinusoidal
E. ???

