True or False: The electric field, $\mathbf{E (r)}$, in some region of space is zero, thus the electric potential, $V(\mathbf{r})$, in that same region of space is zero.
A. True
B. False

True or False: The electric potential, $V(\mathbf{r})$, in some region of space is zero, thus the electric field, $\mathbf{E}(\mathbf{r})$, in that same region of space is zero.
A. True
B. False

Should we post Homework 5 on Friday or wait to post it until after Exam 1?
A. Post it on Friday.
B. Post it after Exam 1.
C. I don't care either way, but I won't work on it until after Exam 1.

ELECTROSTATIC POTENTIAL ENERGY
We usually choose $V(r \rightarrow \infty) \equiv 0$ when calculating the potential of a point charge to be $V(r)=+k q / r$. How does the potential $V(r)$ change if we choose our reference point
to be $V(R)=0$ where R is close to $+q$.
A. $V(r)$ higher than it was before
B. $V(r)$ is lower than it was before
C. $V(r)$ doesn't change (V is independent of choice of reference)

Three identical charges $+q$ sit on an equilateral triangle. What would be the final $K E$ of the top charge if you released it (keeping the other two fixed)?
A. $\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{a}$
B. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q^{2}}{3 a}$
C. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q^{2}}{a}$
D. $\frac{1}{4 \pi \varepsilon_{0}} \frac{3 q^{2}}{a}$
E. Other

Three identical charges $+q$ sit on an equilateral triangle. What would be the final $K E$ of the top charge if you released all three?
A. $\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{a}$

B. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q^{2}}{3 a}$
C. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q^{2}}{a}$
D. $\frac{1}{4 \pi \varepsilon_{0}} \frac{3 q^{2}}{a}$
E. Other

