We derived that the electric field due to an infinite sheet with charge density σ was as follows:

$$\mathbf{E}(z) = \begin{cases} \frac{\sigma}{2\varepsilon_0} \hat{k} & \text{if } z > 0\\ \frac{-\sigma}{2\varepsilon_0} \hat{k} & \text{if } z < 0 \end{cases}$$

What does that tell you about the difference in the field when we cross the sheet, $\mathbf{E}(+z) - \mathbf{E}(-z)$?

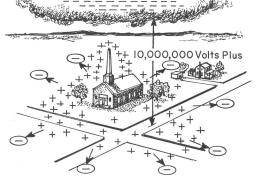
A. it's zero
B. it's
$$\frac{\sigma}{\varepsilon_0}$$

C. it's $-\frac{\sigma}{\varepsilon_0}$
D. it's $+\frac{\sigma}{\varepsilon_0}\hat{k}$
E. it's $-\frac{\sigma}{\varepsilon_0}\hat{k}$

ANNOUNCEMENTS

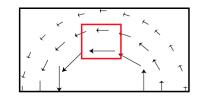
- Homework 2 solutions posted
- Exam 1 is coming up! October 5th (More details next week!)

For me, the second homework was ...


A. fairly straight-forward; lower difficulty than I expected.

- B. challenging, but at the level of difficulty I expected
- C. a bit more difficult than I expected, but still manageable
- D. much more difficult than I expected.

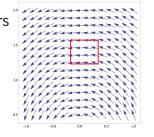
I spent ... hours on the second homework.


A. 1-4 B. 5-6 C. 7-8 D. 9-10 E. More than 10

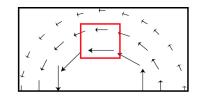
ELECTRIC POTENTIAL

Which of the following two fields has zero curl?											
	I					II					
	114444		1114444						•		
	A. Both do. B. Only I is zero C. Only II is zero D. Neither is zer E. ???										

What is the curl of this vector field, in the red region shown below?


A. non-zero everywhere in the boxB. non-zero at a limited set of pointsC. zero curl everywhere shown

D. we need a formula to decide


What is the curl of the vector field, $\mathbf{v} = c\hat{\phi}$, in the region shown below?

A. non-zero everywhere

B. zero at some points, non-zero at othersC. zero curl everywhere

What is the curl of this vector field, $\mathbf{v} = \frac{c}{s}\hat{\phi}$, in the red region shown below?

A. non-zero everywhere in the boxB. non-zero at a limited set of pointsC. zero curl everywhere shown

Is it mathematically ok to do this?

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \int_V \rho(\mathbf{r}') d\tau' \left(-\nabla \frac{1}{\Re}\right)$$
$$\longrightarrow \mathbf{E} = -\nabla \left(\frac{1}{4\pi\varepsilon_0} \int_V \rho(\mathbf{r}') d\tau' \frac{1}{\Re}\right)$$
$$A. \text{ Yes}$$
$$B. \text{ No}$$
$$C. ???$$

If
$$\nabla \times \mathbf{E} = 0$$
, then $\oint_C \mathbf{E} \cdot d\mathbf{l} =$
A. 0
B. something finite
C. ∞
D. Can't tell without knowing C

Can superposition be applied to electric potential, *V*?

$$V_{tot} \stackrel{?}{=} \sum_{i} V_i = V_1 + V_2 + V_3 + \dots$$

A. Yes
B. No

C. Sometimes