A point charge (q) is located at position ${f R}$, as shown. What is

 $ho({f r})$, the charge density in all space?

What are the units of $\delta(x)$ if x is measured in meters?

Compute:

 $\int_{0}^{\infty} x^{2} \delta(3x+5) dx$

E. Something else

A. 25/3

B. -5/3 C. 25/27 D. 25/9

A. $\delta(x)$ is dimension less ('no units') B. [m]: Unit of length C. [m²]: Unit of length squared D. [m⁻¹]: 1 / (unit of length) E. [m⁻²]: 1 / (unit of length squared) What are the units of $\delta^3(\mathbf{r})$ if the components of \mathbf{r} are measured in meters?

A. [m]: Unit of length

- B. [m²]: Unit of length squared
- C. $[m^{-1}]$: 1 / (unit of length)
- D. $[m^{-2}]$: 1 / (unit of length squared)
- E. None of these.

What is the divergence in the boxed region?

A. Zero

B. Not zero

C. ???

