$$
\begin{aligned}
& \quad \text { Compute: } \\
& \int_{-\infty}^{\infty} x^{2} \delta(3 x+5) d x \\
& \text { A. } 25 / 3 \\
& \text { B. }-5 / 3 \\
& \text { C. } 25 / 27 \\
& \text { D. } 25 / 9 \\
& \text { E. Something else }
\end{aligned}
$$

What are the units of $\delta(x)$ if x is measured in meters?
A. $\delta(x)$ is dimension less ('no units')
B. [m]: Unit of length
C. [$\left.\mathrm{m}^{2}\right]$: Unit of length squared
D. $\left[\mathrm{m}^{-1}\right]: 1 /$ (unit of length)
E. $\left[\mathrm{m}^{-2}\right]: 1 /$ (unit of length squared)

A point charge (q) is located at position \mathbf{R}, as shown. What is
$\rho(\mathbf{r})$, the charge density in all space?
A. $\rho(\mathbf{r})=q \delta^{3}(\mathbf{R})$
B. $\rho(\mathbf{r})=q \delta^{3}(\mathbf{r})$
C. $\rho(\mathbf{r})=q \delta^{3}(\mathbf{R}-\mathbf{r})$
D. $\rho(\mathbf{r})=q \delta^{3}(\mathbf{r}-\mathbf{R})$
E. Something else??
origin

What are the units of $\delta^{3}(\mathbf{r})$ if the components of \mathbf{r} are measured in meters?
A. [m]: Unit of length
B. $\left[\mathrm{m}^{2}\right]$: Unit of length squared
C. $\left[\mathrm{m}^{-1}\right]: 1$ / (unit of length)
D. $\left[\mathrm{m}^{-2}\right]: 1 /$ (unit of length squared)
E. None of these.

What is the divergence in the boxed region?

