Velocity is a defined quantity:

$$
\mathbf{u}=\frac{\Delta \mathbf{r}}{\Delta t}=\left\langle\frac{\Delta x}{\Delta t}, \frac{\Delta y}{\Delta t}, \frac{\Delta z}{\Delta t}\right\rangle
$$

In another inertial frame, seen to be moving to the right, parallel to x , observers see:

$$
\begin{aligned}
\mathbf{u}^{\prime}= & \frac{\Delta \mathbf{r}^{\prime}}{\Delta t^{\prime}}=\left\langle\frac{\Delta x^{\prime}}{\Delta t^{\prime}}, \frac{\Delta y^{\prime}}{\Delta t^{\prime}}, \frac{\Delta z^{\prime}}{\Delta t^{\prime}}\right\rangle \\
& \text { Is velocity a 4-vector? }
\end{aligned}
$$

A. Yes
B. No

Which of the following equations is the correct way to write out the Lorentz scalar product?

$$
\begin{aligned}
& \text { A. } a \cdot b=-a^{0} b^{0}+a^{1} b^{1}+a^{2} b^{2}+a^{3} b^{3} \\
& \text { B. } a \cdot b=a_{0} b^{0}+a_{1} b^{1}+a_{2} b^{2}+a_{3} b^{3} \\
& \text { C. } a \cdot b=a_{\nu} b^{\nu} \\
& \text { D. None of these } \\
& \text { E. All three are correct }
\end{aligned}
$$

Imagine this quantity:

$$
u^{\mu} \equiv\left(\begin{array}{c}
c \\
\frac{\Delta x}{\Delta t} \\
\frac{\Delta y}{\Delta t} \\
\frac{\Delta z}{\Delta t}
\end{array}\right)
$$

Is this quantity a 4-vector?
A. Yes, and I can say why.
B. No, and I can say why.
C. None of the above.

Imagine this quantity:

$$
\eta^{\mu} \equiv \frac{1}{\Delta \tau}\left(\begin{array}{c}
c t \\
\Delta x \\
\Delta y \\
\Delta z
\end{array}\right)
$$

Is this quantity a 4 -vector?
A. Yes, and I can say why.
B. No, and I can say why.
C. None of the above.

In my frame (S) I measure two events which occur at the same place, but different times t_{1} and t_{2} (they are NOT simultaneous)

Might you (in frame S^{\prime}) measure those SAME two events to occur simultaneously in your frame?
A. Possibly, if I'm in the right frame!
B. Not a chance
C. Definitely need more info!
D. ???

