I have seen the Eisntein summation notation before:

$$
\mathbf{a} \cdot \mathbf{b} \equiv a_{\mu} b^{\mu}
$$

A. Yes and I'm comfortable with it
B. Yes, but I'm just a little rusty with it
C. Yes, but I don't remember it it all
D. Nope

ANNOUNCEMENTS

- Poster printing (Free!)
- Send your poster (PDF or PPT) to coeprint@msu.edu
- Tell them you are in PHY 482
- Make sure to give a couple of days for the print! (No weekends)
- Last Quiz (this Friday)
- Use special relativity to investigate the effects of particle detection
- Compare two events observed from different frames

True or False: The dot product (in 3 space) is invariant to rotations.

$$
\mathbf{a} \cdot \mathbf{b} \equiv a_{\mu} b^{\mu}
$$

A. True
B. False
C. No idea

Displacement is a defined quantity

$$
\Delta x^{\mu} \equiv\left(x_{A}^{\mu}-x_{B}^{\mu}\right)
$$

Is the displacement a contravariant 4-vector?
A. Yes
B. No
C. Umm...don't know how to tell
D. None of these.

Be ready to explain your answer.

The displacement between two events Δx^{μ} is a contravariant 4-vector. Is $5 \Delta x^{\mu}$ also a 4 -vector?
A. Yes
B. No

The displacement between two events Δx^{μ} is a contravariant 4-vector.

Is $\Delta x^{\mu} / \Delta t$ also a 4-vector (where Δt is the time between in events in some frame)?
A. Yes
B. No

The displacement between two events Δx^{μ} is a contravariant 4-vector.

Is $\Delta x^{\mu} / \Delta \tau$ also a 4-vector (where $\Delta \tau$ is the proper time)?
A. Yes
B. No

