Consider a S^{\prime} frame moving with a speed v in 1D with respect to a stationary frame S. Using your everyday intuition, write down the relationship between a position measurement x and x^{\prime}.

Be ready to explain why this makes sense to you.

The Galilean transformation between S^{\prime} and S is:

$$
x=x^{\prime}+v t
$$

The Lorentz transformation will introduce a γ, where do you think it goes? And why?

I'm in frame S, and you are in is in Frame S^{\prime}, which moves with speed V in the $+x$ direction.

An object moves in the S^{\prime} frame in the $+x$ direction with speed v_{x}^{\prime}. Do I measure its x component of velocity to be

$$
v_{x}=v_{x}^{\prime} ?
$$

A. Yes
B. No
C. ???

I'm in frame S, and you are in is in Frame S^{\prime}, which moves with speed V in the $+x$ direction.

An object moves in the S^{\prime} frame in the $+y$ direction with speed v_{y}^{\prime}. Do I measure its y component of velocity to be

$$
v_{y}=v_{y}^{\prime} ?
$$

A. Yes
B. No
C. ???

With Einstein's velocity addition rule,

$$
u=\frac{u^{\prime}+v}{1+\frac{u^{\prime} v}{c^{2}}}
$$

what happens when v is very small compared to c ?

$$
\begin{aligned}
& \text { A. } u \rightarrow 0 \\
& \text { B. } u \rightarrow c \\
& \text { C. } u \rightarrow \infty \\
& \text { D. } u \approx u^{\prime}+v \\
& \text { E. Something else }
\end{aligned}
$$

With Einstein's velocity addition rule,

$$
u=\frac{u^{\prime}+v}{1+\frac{u^{\prime} v}{c^{2}}}
$$

what happens when u^{\prime} is c ?

$$
\begin{aligned}
& \text { A. } u \rightarrow 0 \\
& \text { B. } u \rightarrow c \\
& \text { C. } u \rightarrow \infty \\
& \text { D. } u \approx u^{\prime}+v \\
& \text { E. Something else }
\end{aligned}
$$

With Einstein's velocity addition rule,

$$
u=\frac{u^{\prime}+v}{1+\frac{u^{\prime} v}{c^{2}}}
$$

what happens when v is c ?

$$
\begin{aligned}
& \text { A. } u \rightarrow 0 \\
& \text { B. } u \rightarrow c \\
& \text { C. } u \rightarrow \infty \\
& \text { D. } u \approx u^{\prime}+v \\
& \text { E. Something else }
\end{aligned}
$$

