You have this solution to Maxwell's equations in vacuum:

$$
\widetilde{\mathbf{E}}(x, y, z, t)=\widetilde{\mathbf{E}}_{0} \exp [i(\mathbf{k} \cdot \mathbf{r}-\omega t)]
$$

If this wave travels in the y direction, is polarized in the x direction, and has a complex phase of 0 , what is the x component of the physical wave?

$$
\begin{aligned}
& \text { A. } E_{x}=E_{0} \cos (k x-\omega t) \\
& \text { B. } E_{x}=E_{0} \cos (k y-\omega t) \\
& \text { C. } E_{x}=E_{0} \cos (k z-\omega t) \\
& \text { D. } E_{x}=E_{0} \cos \left(k_{x} x+k_{y} y-\omega t\right) \\
& \text { E. Something else }
\end{aligned}
$$

The electric fields of two EM waves in vacuum are both described by:

$$
\mathbf{E}=E_{0} \sin (k x-\omega t) \hat{y}
$$

The "wave number" k of wave 1 is larger than that of wave 2 , $k_{1}>k_{2}$. Which wave has the larger frequency f ?
A. Wave 1
B. Wave 2
C. impossible to tell

