
How amazing is that 
1

ϵ0μ0

= 3 × 108m / s?
√

OMGBBQPIZZA, so amazing!A. 
It's pretty coolB. 
MehC. 
WhateverD. 



CORRECT ANSWERCORRECT ANSWER
OMGBBQPIZZA, so amazing!



Consider a large parallel plate capacitor as shown, charging
so that Q = Q0 + βt on the positively charged plate.

Assuming the edges of the capacitor and the wire
connections to the plates can be ignored, what is the

direction of the magnetic field B halfway between the plates,
at a radius r?

± ϕ̂A. 
0B. 
± ẑC. 
± ŝD. 
???E. 



Same capacitor with Q = Q0 + βt on the positively charged

plate. What is the direction of the magnetic field B halfway
between the plates, at a radius r?

+ ϕ̂A. 

− ϕ̂B. 
Not sure how to tellC. 



Same capacitor with Q = Q0 + βt on the positively charged

plate. What kind of amperian loop can be used between the
plates to find the magnetic field B halfway between the

plates, at a radius r?

D) A different loop E) Not enough symmetry for a useful loop



Same capacitor with Q = Q0 + βt on the positively charged

plate. What is the magnitude of the magnetic field B halfway
between the plates, at a radius r?

μ0β

2πr
A. 

μ0βr

2d2
B. 

μ0βd

2a2
C. 

μ0βa



Consider the surface of an
imaginary volume (dashed lines, at
right) that partly encloses the left

capacitor plate. For this closed
surface, is the total flux of the

current density, ∬J ⋅ dA positive, negative or zero?

PositiveA. 
NegativeB. 
ZeroC. 



At each location, we will evaluate
the sign of \partial \rho/\partial t

and \nabla \cdot \mathbf{J}.

At location 3, the signs of \partial
\rho/\partial t and \nabla \cdot \mathbf{J} are:

both zeroA. 
both negativeB. 
both positiveC. 
\partial \rho/\partial t is positive and \nabla \cdot
\mathbf{J} is negative

D. 

\partial \rho/\partial t is negative and \nabla \cdot
\mathbf{J} is positive

E. 

Recall that charge is conserved locally!



At each location, we will evaluate
the sign of \partial \rho/\partial t

and \nabla \cdot \mathbf{J}.

At location 2, the signs of \partial
\rho/\partial t and \nabla \cdot \mathbf{J} are:

both zeroA. 
both negativeB. 
both positiveC. 
\partial \rho/\partial t is positive and \nabla \cdot
\mathbf{J} is negative

D. 

\partial \rho/\partial t is negative and \nabla \cdot
\mathbf{J} is positive

E. 

Recall that charge is conserved locally!



At each location, we will evaluate
the sign of \partial \rho/\partial t

and \nabla \cdot \mathbf{J}.

At location 4, the signs of \partial
\rho/\partial t and \nabla \cdot \mathbf{J} are:

both zeroA. 
both negativeB. 
both positiveC. 
\partial \rho/\partial t is positive and \nabla \cdot
\mathbf{J} is negative

D. 

\partial \rho/\partial t is negative and \nabla \cdot
\mathbf{J} is positive

E. 

Recall that charge is conserved locally!



At each location, we will evaluate
the sign of \partial \rho/\partial t

and \nabla \cdot \mathbf{J}.

At location 1, the signs of \partial
\rho/\partial t and \nabla \cdot \mathbf{J} are:

both zeroA. 
both negativeB. 
both positiveC. 
\partial \rho/\partial t is positive and \nabla \cdot
\mathbf{J} is negative

D. 

\partial \rho/\partial t is negative and \nabla \cdot
\mathbf{J} is positive

E. 

Recall that charge is conserved locally!



At each location, we will evaluate
the sign of \partial \rho/\partial t

and \nabla \cdot \mathbf{J}.

At location 5, the signs of \partial
\rho/\partial t and \nabla \cdot \mathbf{J} are:

both zeroA. 
both negativeB. 
both positiveC. 
\partial \rho/\partial t is positive and \nabla \cdot
\mathbf{J} is negative

D. 

\partial \rho/\partial t is negative and \nabla \cdot
\mathbf{J} is positive

E. 

Recall that charge is conserved locally!



Suppose the original Ampere's law
\nabla \times \mathbf{B} =

\mu_0\mathbf{J} were correct
without any correction from

Maxwell (it’s not, but suppose for a
moment that it is). What would this imply about \nabla \cdot

\mathbf{J} at points 2 and 4 in the diagram?

The remain unchangedA. 
They swap signsB. 
They become zeroC. 
???D. 



Let's continue with the
(incomplete) definition of Ampere's

Law: \nabla \times \mathbf{B} =
\mu_0\mathbf{J}.

What does this form tell you about the signs of (\nabla
\times \mathbf{B})_x at locations 1, 3, and 5?

All positiveA. 
All negativeB. 
Positive at 1 and 5, zero at 3C. 
Negative at 1 and 5, zero at 3D. 
Something elseE. 



Let's return to the complete
definition of Ampere's Law: \nabla

\times \mathbf{B} =
\mu_0\mathbf{J} + \varepsilon_0

\mu_0 \frac{d\mathbf{E}}{dt}.

At location 1, what are the signs of J_x, dE_x/dt, and (\nabla
\times \mathbf{B})_x?

J_x<0, dE_x/dt<0, (\nabla \times \mathbf{B})_x<0A. 
J_x=0, dE_x/dt>0, (\nabla \times \mathbf{B})_x>0B. 
J_x>0, dE_x/dt=0, (\nabla \times \mathbf{B})_x>0C. 
J_x>0, dE_x/dt>0, (\nabla \times \mathbf{B})_x>0D. 
Something elseE. 



Let's return to the complete
definition of Ampere's Law: \nabla

\times \mathbf{B} =
\mu_0\mathbf{J} + \varepsilon_0

\mu_0 \frac{d\mathbf{E}}{dt}.

At location 3, what are the signs of J_x, dE_x/dt, and (\nabla
\times \mathbf{B})_x?

J_x<0, dE_x/dt<0, (\nabla \times \mathbf{B})_x<0A. 
J_x=0, dE_x/dt>0, (\nabla \times \mathbf{B})_x>0B. 
J_x>0, dE_x/dt=0, (\nabla \times \mathbf{B})_x>0C. 
J_x>0, dE_x/dt>0, (\nabla \times \mathbf{B})_x>0D. 
Something elseE. 



A pair of capacitor plates are
charging up due to a current I. The
plates have an area A=\pi R^2. Use

the Maxwell-Ampere Law to find
the magnetic field at the point "x" in the diagram as distance

r from the wire.

B = \frac{\mu_0 I}{4 \pi r}A. 
B = \frac{\mu_0 I}{2 \pi r}B. 
B = \frac{\mu_0 I}{4 \pi r^2}C. 
B = \frac{\mu_0 I}{2 \pi r^2}D. 
Something much more complicatedE. 



The plates have an area A=\pi R^2.
Use the Gauss' Law to find the

electric field between the plates,
answer in terms of \sigma the

charge density on the plates.

E = \sigma/\varepsilon_0A. 
E = -\sigma/\varepsilon_0B. 
E = \sigma/(\varepsilon_0 \pi R^2)C. 
E = \sigma \pi R^2 / \varepsilon_0D. 
Something much more complicatedE. 



The plates have an area A=\pi R^2.
Determine the relationship

between the current flowing in the
wires and the rate of change of the

charge density on the plates.

d\sigma/dt = IA. 
\pi R^2 d\sigma/dt = IB. 
d\sigma/dt = \pi R^2 IC. 
Something elseD. 



We found the relationship between the current and the
change of the charge density was: \pi R^2 d\sigma/dt = I.

Determine the rate of change of the electric field between
the plates, d\mathbf{E}/dt.

\sigma/\varepsilon_0 \hat{x}A. 
I/(\pi R^2 \varepsilon_0) \hat{x}B. 
-I/(\pi R^2 \varepsilon_0) \hat{x}C. 
I/(2 \pi R \varepsilon_0) \hat{x}D. 
-I/(2 \pi R \varepsilon_0) \hat{x}E. 



Use the Maxwell-Ampere Law to
derive a formula for the manetic at

a distance r<R from the center of
the plate in terms of the current, I.

B=\frac{\mu_0 I}{2\pi r}A. 
B=\frac{\mu_0 I r}{2\pi R^2}B. 
B=\frac{\mu_0 I}{4\pi r}C. 
B=\frac{\mu_0 I r}{4\pi R^2}D. 
Something else entirelyE. 



Use the Maxwell-Ampere Law to
derive a formula for the manetic at

a distance r>R from the center of
the plate in terms of the current, I.

B=\frac{\mu_0 I}{2\pi r}A. 
B=\frac{\mu_0 I r}{2\pi R^2}B. 
0C. 
Something else entirelyD. 


