A resistor (R) and an inductor (L) are in parallel. What is the effective impedance, $Z_{e f f}$ across these elements?

> A. $R+L$ B. $R+i \omega L$ C. $1 /(R+i \omega L)$ D. $\frac{1}{1 / R-i /(\omega L)}$

E . Something else?

What is the total impedance of this circuit, $Z_{\text {total }}$?

$$
\begin{aligned}
& \text { A. } R+i\left(\omega L+\frac{1}{\omega C}\right) \\
& \text { B. } R+i\left(\omega L-\frac{1}{\omega C}\right) \\
& \text { C. } \frac{1}{R}+\frac{1}{i \omega L}+i \omega C \\
& \text { D. } \frac{1}{\frac{1}{R}+\frac{1}{i \omega L}+i \omega C} \\
& \text { E. None of these }
\end{aligned}
$$

AC voltage V and current I vs time t are as shown:

The graph shows that..
A. I leads V (I peaks before V peaks)
B. I lags V (I peaks after V peaks)
C. Neither

Suppose you have a circuit driven by a voltage:

$$
V(t)=V_{0} \cos (\omega t)
$$

You observe the resulting current is:

$$
I(t)=I_{0} \cos (\omega t-\pi / 4)
$$

Would you say the current is
A. leading
B. lagging
the voltage by 45 degrees?

Consider an RC circuit attached to a sinusoidally driven voltage source. If at $t=0$ we turn on the source, $I(t=0)=\frac{V_{0}}{R}$. Then the current follows this solution,

$$
I(t)=\frac{V_{0}}{\sqrt{R^{2}+\frac{1}{\omega^{2} C^{2}}}} \cos (\omega t+\phi)-\left(\frac{V_{0}}{R}-\frac{V_{0} \cos \phi}{\sqrt{R^{2}+\frac{1}{\omega^{2} C^{2}}}}\right)
$$

What happens to the long term current as $\omega \rightarrow 0$?
A. goes to zero
B. goes to $\frac{V_{0}}{R}$
C. goes to infinity
D. Something else

Consider an RC circuit attached to a sinusoidally driven voltage source. If at $t=0$ we turn on the source, $I(t=0)=\frac{V_{0}}{R}$. Then the current follows this solution,

$$
I(t)=\frac{V_{0}}{\sqrt{R^{2}+\frac{1}{\omega^{2} C^{2}}}} \cos (\omega t+\phi)-\left(\frac{V_{0}}{R}-\frac{V_{0} \cos \phi}{\sqrt{R^{2}+\frac{1}{\omega^{2} C^{2}}}}\right)
$$

What happens to the long term current as $\omega \rightarrow \infty$?
A. goes to zero
B. goes to $\frac{V_{0}}{R}$
C. goes to infinity
D. Something else

