The complex exponential: $e^{i\omega t}$ is useful in calculating properties of many time-dependent equations. According to Euler, we can also write this function as:

- A. $cos(i\omega t) + sin(i\omega t)$
- B. $\sin(\omega t) + i\cos(\omega t)$
- $C.\cos(\omega t) + i\sin(\omega t)$
- D. MORE than one of these is correct
- E. None of these is correct!

ANNOUNCEMENTS

- Quiz 3 (next Friday 2/22) RLC circuits
 - Solve a circuit problem using the phasor method
 - Discuss limits on the response and how it might act as a filter

What is |2 + i|?

A. 1

B. $\sqrt{3}$

C. 5

D. $\sqrt{5}$

E. Something else!

What is
$$(1 + i)^2/(1 - i)$$
?

$$A \rho^{i\pi/4}$$

A.
$$e^{i\pi/4}$$
B. $\sqrt{2}e^{i\pi/4}$

c.
$$e^{i3\pi/4}$$

D.
$$\sqrt{2}e^{i3\pi/4}$$

E. Something else!

Which point below best represents $4e^{i3\pi/4}$ on the complex plane?

What is
$$Re\left[\frac{e^{i\omega t}}{1+i}\right]$$
?

A.
$$\frac{1}{\sqrt{2}}\cos(\omega t + \pi/4)$$

A.
$$\frac{1}{\sqrt{2}}\cos(\omega t + \pi/4)$$

B. $\frac{1}{\sqrt{2}}\cos(\omega t - \pi/4)$
C. $\frac{1}{2}\cos(\omega t + \pi/4)$
D. $\frac{1}{2}\cos(\omega t - \pi/4)$

$$C. \frac{1}{2} \cos(\omega t + \pi/4)$$

D.
$$\frac{1}{2}\cos(\omega t - \pi/4)$$

E. Something else