The complex exponential: $e^{i \omega t}$ is useful in calculating properties of many time-dependent equations. According to Euler, we can also write this function as:
A. $\cos (i \omega t)+\sin (i \omega t)$
B. $\sin (\omega t)+i \cos (\omega t)$
C. $\cos (\omega t)+i \sin (\omega t)$
D. MORE than one of these is correct
E. None of these is correct!

ANNOUNCEMENTS

- Quiz 3 (next Friday 2/22) - RLC circuits
- Solve a circuit problem using the phasor method
- Discuss limits on the response and how it might act as a filter

What is $|2+i|$?

A. 1
B. $\sqrt{3}$
C. 5
D. $\sqrt{5}$
E. Something else!

What is $(1+i)^{2} /(1-i)$?
A. $e^{i \pi / 4}$
B. $\sqrt{2} e^{i \pi / 4}$
C. $e^{i 3 \pi / 4}$
D. $\sqrt{2} e^{i 3 \pi / 4}$
E. Something else!

Which point below best represents $4 e^{i 3 \pi / 4}$ on the complex plane?

What is $\operatorname{Re}\left[\frac{e^{i \omega t}}{1+i}\right]$?
A. $\frac{1}{\sqrt{2}} \cos (\omega t+\pi / 4)$
B. $\frac{1}{\sqrt{2}} \cos (\omega t-\pi / 4)$
C. $\frac{1}{2} \cos (\omega t+\pi / 4)$
D. $\frac{1}{2} \cos (\omega t-\pi / 4)$
E. Something else

