A small chunk of material (the "tan cube") is placed above a solenoid. It magnetizes, weakly, as shown by small arrows inside. What kind of material must the cube be?
A. Dielectric
B. Conductor
C. Diamagnetic
D. Paramagnetic
E. Ferromagnetic

FINAL EXAM

- A few true/false questions conceptual questions
- Determine bound charge, E, D, P for some material with χ_{e}, and explain where the bound charge is.
- Setup magnetic vector potential and field calculations. Compare the appraoches.
- Determine the B for some J using Ampere's Law.
- Determine bound currents, \mathbf{B}, and \mathbf{H} for some material with a "simple" free current, and explain properties of the bound currents

A solid cylinder has uniform magnetization \mathbf{M} throughout the volume in the ϕ direction as shown. In which direction does the bound surface current flow on the (curved) sides?
A. There is no bound surface current.
B. The current flows in the $\pm \phi$ direction.
C. The current flows in the $\pm s$ direction.
D. The current flows in the $\pm z$ direction.

E. The direction is more complicated.

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the $+z$ direction. What is the direction of the bound volume current?
A. \mathbf{J}_{B} points parallel to I
B. \mathbf{J}_{B} points anti-parallel to I
C. It's zero!
D. Other/not sure

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the $+z$ direction. We know \mathbf{B} will be CCW as viewed from above. (Right?) What about \mathbf{H} and \mathbf{M} inside the cylinder?
A. Both are CCW
B. Both are CW
C. \mathbf{H} is CCW , but \mathbf{M} is CW
D. \mathbf{H} is $\mathbf{C W}, \mathbf{M}$ is CCW
E. ???

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the $+z$ direction. What is the direction of the bound volume current?
A. \mathbf{J}_{B} points parallel to I
B. \mathbf{J}_{B} points anti-parallel to I
C. It's zero!
D. Other/not sure

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the $+z$ direction. What is the direction of the bound surface current?
A. \mathbf{K}_{B} points parallel to I
B. \mathbf{K}_{B} points anti-parallel to I
C. Other/not sure

