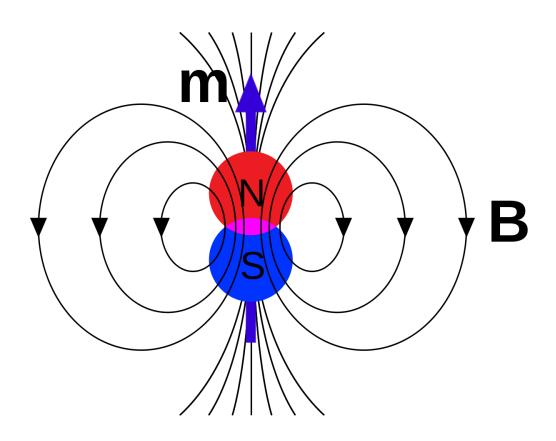
Consider line of charge with uniform charge density,  $\lambda = \rho \pi a^2$ . What is the magnitude of the electric field outside of the line charge (at a distance s > a)?

A. 
$$E = \lambda/(4\pi\varepsilon_0 s^2)$$

B. 
$$E = \lambda/(2\pi\varepsilon_0 s^2)$$


$$C. E = \lambda/(4\pi\varepsilon_0 s)$$

D. 
$$E = \lambda/(2\pi\varepsilon_0 s)$$

E. Something else?!

Use Gauss' Law

## **MAGNETIC DIPOLES**



The leading term in the vector potential multipole expansion involves:

$$\oint d\mathbf{l'}$$

What is the magnitude of this integral?

A. *R* 

B.  $2\pi R$ 

C. 0

D. Something entirely different/it depends!

The vector potential for the dipole is:

$$\mathbf{A}_d = \frac{\mu_0}{4\pi r^2} \mathbf{m} \times \hat{\mathbf{r}}$$

What is the magnitude of that cross product  $|\mathbf{m} \times \hat{\mathbf{r}}|$ ?

A. 1

B. *m* 

C.  $mr \sin \theta$ 

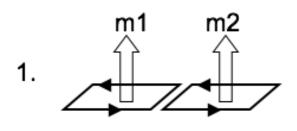
D.  $m \sin \theta$ 

E. Something else?

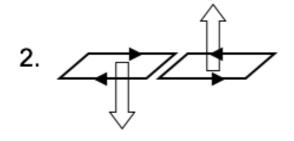
The vector potential for the dipole is:

$$\mathbf{A}_d = \frac{\mu_0}{4\pi r^2} \mathbf{m} \times \hat{\mathbf{r}}$$

If the magnetic dipole moment points in the  $\hat{\mathbf{z}}$  direction, what is the direction of the  $\mathbf{A}_d$ ?


A.  $\hat{\mathbf{z}}$ 

B.  $\hat{\phi}$ 


C. r

 $D. \hat{m}$ 

E. Something else?

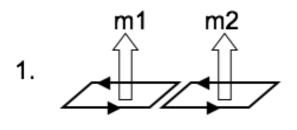


Two magnetic dipoles  $m_1$  and  $m_2$  (equal in magnitude) are oriented in three different ways.

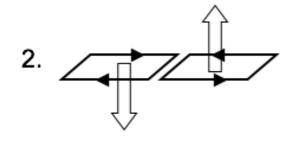


Which ones can produce a dipole field at large distances?

3.


A. None of these

B. All three


C. 1 only

D. 1 and 2 only

E. 1 and 3 only



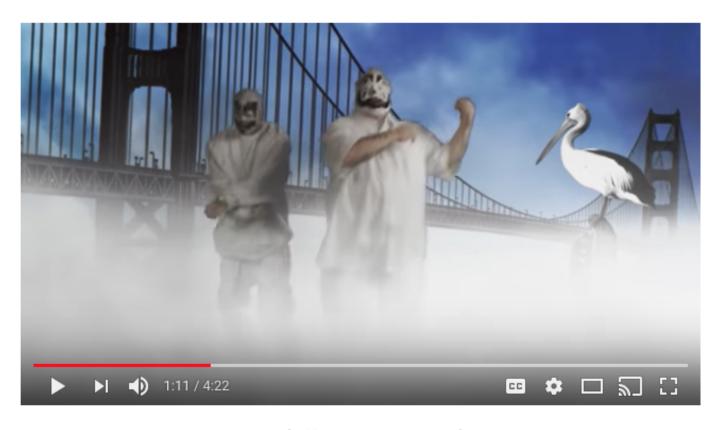
Two magnetic dipoles  $m_1$  and  $m_2$  (unequal in magnitude) are oriented in three different ways.



Which ones can produce a dipole field at large distances?

3.

A. None of these


B. All three

C. 1 only

D. 1 and 2 only

E. 1 and 3 only

## MAGNETS, HOW DO THEY WORK?

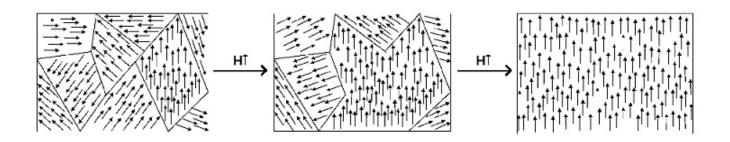


Insane Clown Posse - Miracles (Official Music Video)

17,971,827 views












Insane Clown Posse - Miracles

## PARAMAGNETISM & MAGNETIC DOMAINS

