What flexibility do we have in defining the vector potential given the Coulomb gauge ($\nabla \cdot \mathbf{A} = 0$)? That is, what can \mathbf{A}' be that gives us the same **B**?

A.
$$\mathbf{A}' = \mathbf{A} + C$$

B. $\mathbf{A}' = \mathbf{A} + \mathbf{C}$
C. $\mathbf{A}' = \mathbf{A} + \nabla C$
D. $\mathbf{A}' = \mathbf{A} + \nabla \cdot \mathbf{C}$
E. Something else?

What is the physical interpretation of $\oint \mathbf{A} \cdot d\mathbf{l}$?

- A. The current density ${f J}$
- B. The magnetic field ${f B}$
- C. The magnetic flux Φ_B
- D. It's none of the above, but is something simple and concrete
- E. It has no particular physical interpretation at all

For a infinite solenoid of radius *R*, with current *I*, and *n* turns per unit length, which is the current density **J**?

A.
$$\mathbf{J} = nI\hat{\phi}$$

B. $\mathbf{J} = nI\delta(r - R)\hat{\phi}$
C. $\mathbf{J} = \frac{I}{n}\delta(r - R)\hat{\phi}$
D. $\mathbf{J} = \mu_0 nI\delta(r - R)\hat{\phi}$
E. Something else?!

The vector potential A due to a long straight wire with current I along the z-axis is in the direction parallel to:

> A. \hat{z} B. $\hat{\phi}$ (azimuthal) C. \hat{s} (radial)

Assume the Coulomb Gauge

4 = ?

Ζ

Ι

Consider a fat wire with radius a with uniform current I_0 that runs along the +z-axis. We can compute the vector potential due to this wire directly. What is **J**?

> A. $I_0/(2\pi)$ B. $I_0/(\pi a^2)$ C. $I_0/(2\pi a)\hat{z}$ D. $I_0/(\pi a^2)\hat{z}$ E. Something else!?

Consider a fat wire with radius *a* with uniform current I_0 that runs along the +*z*-axis. Given $\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{\Re} d\tau'$, which components of **A** need to be computed?

> A. All of them B. Just A_x C. Just A_y D. Just A_z E. Some combination

Consider a shell of charge with surface charge σ that is rotating at angular frequency of ω . Which of the expressions below describe the surface current, **K**, that is observed in the fixed frame.

> A. $\sigma \vec{\omega}$ B. $\sigma \dot{\mathbf{r}}$ C. $\sigma \mathbf{r} \times \vec{\omega}$ D. $\sigma \vec{\omega} \times \mathbf{r}$ E. Something else?