What do we expect $\mathbf{B}(\mathbf{r})$ to look like for the infinite sheet of current shown below?
A. $B(x) \hat{x}$
B. $B(z) \hat{x}$
C. $B(x) \hat{z}$
D. $B(z) \hat{z}$
E. Something else

Which Amperian loop are useful to learn about $B(x, y, z)$ somewhere?

E. More than 1

Consider a toroid, which is like a finite solenoid connected end to end. In which direction do you expect the B field to point?
A. Azimuthally ($\hat{\phi}$ direction)
B. Radially (\hat{s} direction)
C. In the \hat{z} direction (perp. to page)
D. Loops around the rim
E. Mix of the above...

Which Amperian loop would you draw to find B "inside" the Torus (region II)?

A. Large "azimuthal" loop
B. Smallish loop from region II to outside (where B=0)
C. Small loop in region II
D. Like A, but perp to page
E. Something entirely different

Gauss' Law for magnetism, $\nabla \cdot \mathbf{B}=0$ suggests we can generate a potential for \mathbf{B}. What form should the definition of this potential take (Φ and \mathbf{A} are placeholder scalar and vector functions, respectively)?

$$
\begin{aligned}
& \text { A. } \mathbf{B}=\nabla \Phi \\
& \text { B. } \mathbf{B}=\nabla \times \Phi \\
& \text { C. } \mathbf{B}=\nabla \cdot \mathbf{A} \\
& \text { D. } \mathbf{B}=\nabla \times \mathbf{A} \\
& \text { E. Something else?! }
\end{aligned}
$$

With $\nabla^{2} \mathbf{A}=-\mu_{0} \mathbf{J}$, we can write (in Cartesian coordinates):

$$
\nabla^{2} A_{x}=-\mu_{0} J_{x}
$$

Does that also mean in spherical coordinates that

$$
\nabla^{2} A_{r}=-\mu_{0} J_{r} ?
$$

A. Yes
B. No

We can compute \mathbf{A} using the following integral:

$$
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\mathfrak{R}} d \tau^{\prime}
$$

Can you calculate that integral using spherical coordinates?
A. Yes, no problem
B. Yes, r^{\prime} can be in spherical, but \mathbf{J} still needs to be in Cartesian components
C. No.

