What do we expect $\mathbf{B}(\mathbf{r})$ to look like for the infinite sheet of current shown below?

A. $B(x)\hat{x}$ B. $B(z)\hat{x}$ C. $B(x)\hat{z}$ D. $B(z)\hat{z}$ E. Something else

Which Amperian loop are useful to learn about B(x, y, z) somewhere?

E. More than 1

Consider a toroid, which is like a finite solenoid connected end to end. In which direction do you expect the B field to point?

A. Azimuthally ($\hat{\phi}$ direction) B. Radially (\hat{s} direction) C. In the \hat{z} direction (perp. to page) D. Loops around the rim E. Mix of the above...

Which Amperian loop would you draw to find B "inside" the Torus (region II)?

- A. Large "azimuthal" loop
- B. Smallish loop from region II to outside (where B=0)
- C. Small loop in region II
- D. Like A, but perp to page
- E. Something entirely different

Gauss' Law for magnetism, $\nabla \cdot \mathbf{B} = 0$ suggests we can generate a potential for \mathbf{B} . What form should the definition of this potential take (Φ and \mathbf{A} are placeholder scalar and vector functions, respectively)?

A.
$$\mathbf{B} = \nabla \Phi$$

B. $\mathbf{B} = \nabla \times \Phi$
C. $\mathbf{B} = \nabla \cdot \mathbf{A}$
D. $\mathbf{B} = \nabla \times \mathbf{A}$
E. Something else?!

With $\nabla^2 \mathbf{A} = -\mu_0 \mathbf{J}$, we can write (in Cartesian coordinates): $\nabla^2 A_x = -\mu_0 J_x$

Does that also mean in spherical coordinates that $\nabla^2 A_r = -\mu_0 J_r$?

A. Yes B. No We can compute ${\bf A}$ using the following integral:

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{\Re} d\tau'$$

Can you calculate that integral using spherical coordinates?

A. Yes, no problem

B. Yes, r' can be in spherical, but J still needs to be in Cartesian components
C. No.