I have two very long, parallel wires each carrying a current I_{1} and I_{2}, respectively. In which direction is the force on the wire with the current I_{2} ?
A. Up
B. Down
C. Right
D. Left
E. Into or out of the page

What is the magnitude of $\frac{d \mathbf{l} \times \hat{\mathfrak{R}}}{\mathfrak{R}^{2}}$?

A. $\frac{d l \sin \phi}{z^{2}}$
B. $\frac{d l}{z^{2}}$
C. $\frac{d l \sin \phi}{z^{2}+a^{2}}$
D. $\frac{d l}{z^{2}+a^{2}}$
E. something else!

What is $d \mathbf{B}_{z}$ (the contribution to the vertical component of \mathbf{B} from this $d \mathbf{l}$ segment?)

$$
\begin{aligned}
& \text { A. } \frac{d l}{z^{2}+a^{2}} \frac{a}{\sqrt{z^{2}+a^{2}}} \\
& \text { B. } \frac{d l}{z^{2}+a^{2}} \\
& \text { C. } \frac{d l}{z^{2}+a^{2}} \frac{z}{\sqrt{z^{2}+a^{2}}} \\
& \text { D. } \frac{d l \cos }{\sqrt{z^{2}+a^{2}}}
\end{aligned}
$$

E. Something else!

What is $\oint \mathbf{B} \cdot d \mathbf{l}$ around this purple (dashed) Amperian loop?

A. $\mu_{0}\left(\left|I_{2}\right|+\left|I_{1}\right|\right)$
B. $\mu_{0}\left(\left|I_{2}\right|-\left|I_{1}\right|\right)$
C. $\mu_{0}\left(\left|I_{2}\right|+\left|I_{1}\right| \sin \theta\right)$
D. $\mu_{0}\left(\left|I_{2}\right|-\left|I_{1}\right| \sin \theta\right)$
E. $\mu_{0}\left(\left|I_{2}\right|+\left|I_{1}\right| \cos \theta\right)$

Stoke's Theorem says that for a surface S bounded by a perimeter L, any vector field \mathbf{B} obeys:

$$
\int_{S}(\nabla \times \mathbf{B}) \cdot d A=\oint_{L} \mathbf{B} \cdot d \mathbf{l}
$$

Does Stoke's Theorem apply for any surface S bounded by a perimeter L, even this balloon-shaped surface S ?

A. Yes
B. No
C. Sometimes

Rank order $\int \mathbf{J} \cdot d \mathbf{A}$ (over blue surfaces) where \mathbf{J} is uniform, going left to right:

A. iii $>$ iv $>\mathrm{ii}>\mathrm{i}$
B. $\mathrm{iii}>\mathrm{i}>\mathrm{ii}>\mathrm{iv}$
C. $\mathrm{i}>\mathrm{ii}>\mathrm{iii}>\mathrm{iv}$
D. Something else!!
E. Not enough info given!!

