A "ribbon" (width a) with uniform surface current density Kpasses through a uniform magnetic field \mathbf{B}_{ext} . Only the length b along the ribbon is in the field. What is the magnitude of the force on the ribbon?

To find the magnetic field **B** at P due to a current-carrying wire we use the Biot-Savart law,

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} I \int \frac{d\mathbf{l} \times \hat{\mathbf{\Re}}}{\mathbf{\Re}^2}$$

In the figure, with $d\mathbf{l}$ shown, which purple vector best represents \Re ?

To find the magnetic field **B** at P due to a current-carrying wire we

use the Biot-Savart law,

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} I \int \frac{d\mathbf{l} \times \hat{\mathbf{R}}}{\mathbf{R}^2}$$

P

What is the direction of the

infinitesimal contribution $\mathbf{B}(P)$ created by current in $d\mathbf{l}$?

A. Up the page

B. Directly away from $d\mathbf{l}$ (in the plane of the page)

C. Into the page

- D. Out of the page
- E. Some other direction

A.
$$\frac{I \ y \ dx'}{[(x')^2 + y^2]^{3/2}} \hat{z}$$

B.
$$\frac{I \ x' \ dx'}{[(x')^2 + y^2]^{3/2}} \hat{y}$$

C.
$$\frac{-I \ x' \ dx'}{[(x')^2 + y^2]^{3/2}} \hat{y}$$

D.
$$\frac{-I \ y \ dx'}{[(x')^2 + y^2]^{3/2}} \hat{z}$$

E. Other!

What do you expect for direction of $\mathbf{B}(P)$? How about direction of $d\mathbf{B}(P)$ generated JUST by the segment of current $d\mathbf{l}$ in red?

A. $\mathbf{B}(P)$ in plane of page, ditto for $d\mathbf{B}(P, by red)$ B. $\mathbf{B}(P)$ into page, $d\mathbf{B}(P, by red)$ into page C. $\mathbf{B}(P)$ into page, $d\mathbf{B}(P, by red)$ out of page D. $\mathbf{B}(P)$ complicated, ditto for $d\mathbf{B}(P, by red)$ E. Something else!!