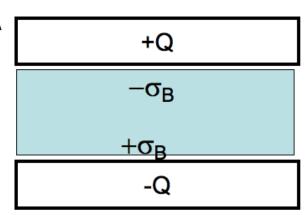

An ideal (large) capacitor has charge Q. A neutral linear dielectric is inserted into the gap. We want to find \mathbf{D} in the dielectric.

$$\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$$

What is $|\mathbf{D}|$ in the dielectric?

A. σ


B. 2σ

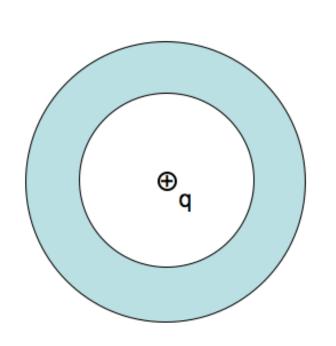
 $C. \sigma/2$

D. $\sigma + \sigma_b$

E. Something else

An ideal (large) capacitor has charge Q. A neutral linear dielectric is inserted into the gap. Now that we have \mathbf{D} in the dielectric, what is \mathbf{E} inside the dielectric?

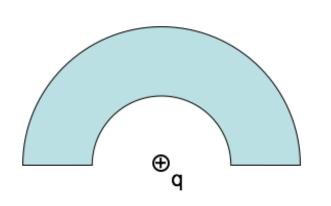
A.
$$\mathbf{E} = \mathbf{D}\varepsilon_0\varepsilon_r$$


B.
$$\mathbf{E} = \mathbf{D}/\varepsilon_0 \varepsilon_r$$

$$\mathbf{C} \cdot \mathbf{E} = \mathbf{D} \varepsilon_0$$

D.
$$\mathbf{E} = \mathbf{D}/\varepsilon_0$$

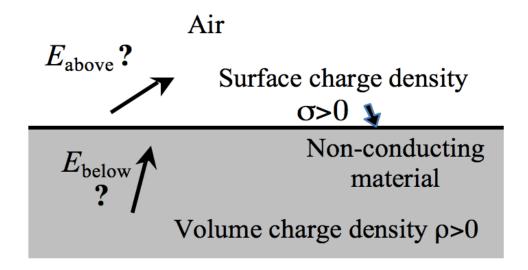
E. Not so simple! Need another method


A point charge +q is placed at the center of a neutral, linear, homogeneous, dielectric teflon shell. Can ${\bf D}$ be computed from its divergence?

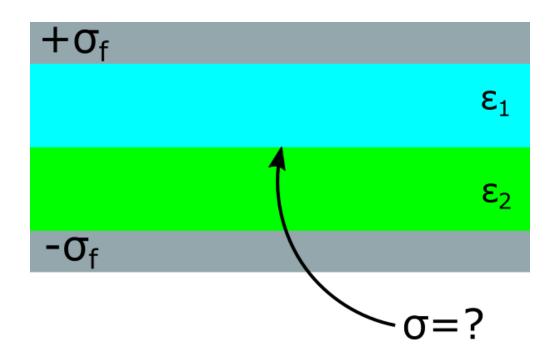
$$\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$$

- A. Yes
- B. No
- C. Depends on other things not given

A point charge +q is placed at the center of a neutral, linear, homogeneous, dielectric **hemispherical** shell. Can $\mathbf D$ be computed from its divergence?


$$\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$$

A. Yes


B. No

C. Depends on other things not given

BOUNDARY CONDITIONS

WHY ARE THESE BOUNDARY CONDITIONS USEFUL?

