A stationary point charge +Q is near a block of polarization material (a linear dielectric). The net electrostatic force on the block due to the point charge is:

A. attractive (to the left)B. repulsive (to the right)C. zero

EXAM 2 INFORMATION

- Covers through polarization (up to Ch 4.2.3)
- Emphasizes material since Exam 1
 - But don't forget Exam 1 material!
- Specifics on Wednesday

POLARIZATION

The sphere below (radius a) has uniform polarization \mathbf{P}_0 , which points in the +zdirection. What is the total dipole moment of this sphere?

A. zero B. $\mathbf{P}_0 a^3$ C. $4\pi a^3 \mathbf{P}_0/3$ D. \mathbf{P}_0 E. None of these/must be more complicated The cube below (side a) has uniform polarization \mathbf{P}_0 , which points in the +zdirection. What is the total dipole moment of this cube?

A. zero
B.
$$a^{3} P_{0}$$

C. P_{0}
D. P_{0}/a^{3}
E. $2P_{0}a^{2}$

Consider a cylinder of radius *a* and height *b* that has it base at the origin and is aligned along the *z*-axis. The polarization of this cylinder is "baked in" and can be modeled using

$$\mathbf{P} = P_0\left(\frac{z}{b}\right)\hat{z}$$

Determine the total dipole moment of this cylinder:

A.
$$P_0\pi a^2 b\hat{z}$$

B. $\frac{1}{2}P_0\pi a^2 b\hat{z}$
C. $P_02\pi ab^2\hat{z}$
D. $\frac{1}{2}P_0\pi ab^2\hat{z}$
E. Something else

In the following case, is the bound surface and volume charge zero or nonzero?

Physical dipoles

idealized dipoles

A.
$$\sigma_b = 0, \rho_b \neq 0$$

B. $\sigma_b \neq 0, \rho_b \neq 0$
C. $\sigma_b = 0, \rho_b = 0$
D. $\sigma_b \neq 0, \rho_b = 0$

In the following case, is the bound surface and volume charge zero or nonzero?

$$| | | |$$

$$\uparrow \uparrow \uparrow$$

$$\uparrow \uparrow$$

Physical dipoles

idealized dipoles

A.
$$\sigma_b = 0, \rho_b \neq 0$$

B. $\sigma_b \neq 0, \rho_b \neq 0$
C. $\sigma_b = 0, \rho_b = 0$
D. $\sigma_b \neq 0, \rho_b = 0$

A VERY thin slab of thickness d and area A has volume charge density $\rho = Q/V$. Because it's so thin, we may think of it as a surface charge density $\sigma = Q/A$.

The relation between ρ and σ is:

A.
$$\sigma = \rho$$

B. $\sigma = \rho d$
C. $\sigma = \rho / d$
D. $\sigma = V \rho$
E. $\sigma = \rho / V$

A dielectric slab (top area A, height h) has been polarized, with $\mathbf{P} = P_0$ in the +z direction. What is the surface charge density, σ_b , on the bottom surface?

A. 0
B.
$$-P_0$$

C. P_0
D. P_0Ah
E. P_0A

A dielectric sphere is uniformly polarized,

$$\mathbf{P} = +P_0\hat{z}$$

What is the surface charge density?

A. 0

B. Non-zero Constant

C. constant*sin θ

D. constant* $\cos \theta$

E. ??

