$$
\mathbf{E}_{d i p}(\mathbf{r})=\frac{p}{4 \pi \varepsilon_{0} r^{3}}(2 \cos \theta \hat{\mathbf{r}}+\sin \theta \hat{\theta})
$$

For the dipole $\mathbf{p}=q \mathbf{d}$ shown, what does the formula predict for the direction of $\mathbf{E}(\mathbf{r})$ for

$$
\theta=0 \text { and } \theta=\pi / 2 ?
$$

Consider r to be large compared to d.

$$
\begin{aligned}
& \text { A. }+z ;+x \\
& \text { B. }-z ;+x \\
& \text { C. }-z ;+z \\
& \text { D. }+z ;-z \\
& \text { E. Some other pair of directions }
\end{aligned}
$$

ANNOUNCEMENTS

- Exam 2 is coming up (2 weeks from today)
- BPS 1415 (this room), 7pm-9pm, Nov 6th
- Same format as Exam 1
- Details next week

IDEAL VS. REAL DIPOLE

$$
\mathbf{p}=\sum_{i} q_{i} \mathbf{r}_{i}
$$

What is the magnitude of the dipole moment of this charge distribution?

A. qd
B. 2qd
C. 3qd
D. 4qd
E. It's not determined

$$
\mathbf{p}=\sum_{i} q_{i} \mathbf{r}_{i}
$$

What is the dipole moment of this system?
(BTW, it is NOT overall neutral!)
A. q d
B. $2 q \mathbf{d}$
C. $\frac{3}{2} q \mathbf{d}$
D. $3 q \mathbf{d}$
E. Someting else (or not defined)

$$
\mathbf{p}=\sum_{i} q_{i} \mathbf{r}_{i}
$$

What is the dipole moment of this system?
(Same as last question, just shifted in z.)
A. q d
B. $2 q \mathbf{d}$
C. $\frac{3}{2} q \mathbf{d}$
D. $3 q \mathbf{d}$
E. Someting else (or not defined)

You have a physical dipole, $+q$ and $-q$ a finite distance d apart. When can you use the expression:

$$
V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}}
$$

A. This is an exact expression everywhere.
B. It's valid for large r
C. It's valid for small r
D. No idea...

You have a physical dipole, $+q$ and $-q$ a finite distance d apart. When can you use the expression:

$$
V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \frac{q_{i}}{\mathfrak{R}_{i}}
$$

A. This is an exact expression everywhere.
B. It's valid for large r
C. It's valid for small r
D. No idea...

