Consider a solid sphere of charge that has a charge density that varies with $\cos \theta$. What can we say about the terms in the general solution to Laplace's equation outside there sphere?

$$
V(r, \theta)=\sum_{l}\left(A_{l} r^{l}+\frac{B_{l}}{r^{(l+1)}}\right) P_{l}(\cos \theta)
$$

A. All the A_{l} 's are zero
B. All the B_{l} 's are zero
C. Only A_{0} should remain
D. Only B_{0} should remain
E. Something else

Two charges are positioned as shown to the left. The relative position vector between them is \mathbf{d}. What is the value of of the dipole moment? $\sum_{i} q_{i} \mathbf{r}_{i}$

A. $+q \mathbf{d}$
B. $-q \mathbf{d}$
C. Zero
D. None of these

MULTIPOLE EXPANSION

Multipole Expansion of the Power Spectrum of CMBR

Two charges are positioned as shown to the left. The relative position vector between them is \mathbf{d}. What is the dipole moment of this configuration?

$$
\sum_{i} q_{i} \mathbf{r}_{i}
$$

A. $+q \mathbf{d}$
B. $-q \mathbf{d}$
C. Zero
D. None of these; it's more complicated than before!

For a dipole at the origin pointing in the z-direction, we have derived:

$$
\mathbf{E}_{d i p}(\mathbf{r})=\frac{p}{4 \pi \varepsilon_{0} r^{3}}(2 \cos \theta \hat{\mathbf{r}}+\sin \theta \hat{\theta})
$$

For the dipole $\mathbf{p}=q \mathbf{d}$ shown, what does the formula predict for the direction of $\mathbf{E}(\mathbf{r}=0)$?
A. Down
B. Up

C. Some other direction
D. The formula doesn't apply

IDEAL VS. REAL DIPOLE

