I still have questions about what we are trying to do with separation of variables in spherical coordinates.
A. Yes, definitely, let's talk about what we are trying to do (briefly).
B. I have some questions, but I think I got the gist of it. We can move on.
C. I got it, let's move on.

The ODE that describes the $R(r)$ part of our solution is:

$$
\frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)=l(l+1) R
$$

I claim this ODE gives rise to polynomial solutions.
Find a general solution for $R(r)$ in terms of l.

Let's take the Θ ODE term by term starting with $l=0$

$$
\frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)=0
$$

What are some possible solutions?

Hint: This is not as tricky as it might seem.

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

V everywhere on a spherical shell is a given constant, i.e. $V(R, \theta)=V_{0}$. There are no charges inside the sphere. Which terms do you expect to appear when finding V (inside)?
A. Many A_{l} terms (but no B_{l} 's)
B. Many B_{l} terms (but no A_{l} 's)
C. Just A_{0}
D. Just B_{0}
E. Something else!

The general solution for the electric potential in spherical coordinates with azimuthal symmetry (no ϕ dependence) is:

$$
V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

Consider a metal sphere (constant potential in and on the sphere, remember). Which terms in the sum vanish outside the sphere? (Recall: $V \rightarrow 0$ as $r \rightarrow \infty$)
A. All the A_{l} 's
B. All the A_{l} 's except A_{0}
C. All the B_{l} 's
D. All the B_{l} 's except B_{0}
E. Something else

Given $V_{0}(\theta)=\sum_{l} C_{l} P_{l}(\cos \theta)$, we want to get to the integral:

$$
\int_{-1}^{+1} P_{l}(u) P_{m}(u) d u=\frac{2}{2+1}(\text { for } l=m)
$$

we can do this by multiplying both sides by:
A. $P_{m}(\cos \theta)$
B. $P_{m}(\sin \theta)$
C. $P_{m}(\cos \theta) \sin \theta$
D. $P_{m}(\sin \theta) \cos \theta$
E. $P_{m}(\sin \theta) \sin \theta$

