What is the value of $\int_{0}^{a} \sin (n \pi x / a) \sin (m \pi x / a) d x$?
A. Zero
B. Non-zero
C. Depends on n and m

EXACT SOLUTIONS:

$$
\begin{gathered}
V(x, y)=\sum_{n=1}^{\infty} \frac{4 V_{0}}{n \pi} \frac{1}{\cosh \left(\frac{n \pi}{2}\right)} \cosh \left(\frac{n \pi x}{a}\right) \sin \left(\frac{n \pi y}{a}\right) \\
\text { APPROXIMATE SOLUTIONS: }
\end{gathered}
$$

(1 TERM; 20 TERMS)

Given that we want to solve Laplace's equation in 2D and that we have a description for the numerical second derivative of one variable,

$$
f^{\prime \prime}(x) \approx \frac{f(x+a)-2 f(x)+f(x-a)}{a^{2}}
$$

what is the appropriate numerical partial derivative for

$$
V(x, y), \partial^{2} V / \partial x^{2} \approx,
$$

A. $\quad[V(x+a)-2 V(x)+V(x-a)] / a^{2}$
B. $[V(x+a, y)-2 V(x, y)+V(x-a, y)] / a^{2}$
C. $\quad[V(y+a)-2 V(y)+V(y-a)] / a^{2}$
D. $[V(x, y+a)-2 V(x, y)+V(x, y-a)] / a^{2}$
E. More than one is correct

Given that the potential at any point is given by the average of the surrounding points,

$$
\begin{gathered}
V(x, y) \approx \frac{1}{4}[V(x+a, y)+V(x, y+a) \\
+V(x-a, y)+V(x, y-a)]
\end{gathered}
$$

Draft the psuedocode for finding the approximate potential.

Given $\nabla^{2} V=0$ in Cartesian coords, we separated $V(x, y, z)=X(x) Y(y) Z(z)$. Will this approach work in spherical coordinates, i.e. can we separate

$$
V(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi) ?
$$

A. Sure.
B. Not quite - the angular components cannot be isolated, e.g., $f(r, \theta, \phi)=R(r) Y(\theta, \phi)$
C. It won't work at all because the spherical form of Laplace's Equation has cross terms in it (see the front cover of Griffiths)

SEPARATION OF VARIABLES (SPHERICAL)

