The solution to Laplace's equation in one Cartesian dimension is always linear. Why?
A. The general solution for $\frac{d^{2} V(x)}{d x^{2}}=0$ is always a line. B. The only way for a given point $V\left(x_{i}\right)$ (in 1d) to be the arithmetic average of its neighbors is for all point to be on a line.
C. Given boundary conditions, it's a unique solution.
D. None of these.
E. More than one of these.

METHOD OF RELAXATION

Consider a function $f(x)$ that is both continuous and continuously differentiable over some domain. Given a step size of a, which could be an approximate derivative of this function somewhere in that domain? $d f / d x \approx$

$$
\begin{aligned}
& \text { A. } f\left(x_{i}+a\right)-f\left(x_{i}\right) \\
& \text { B. } f\left(x_{i}\right)-f\left(x_{i}-a\right) \\
& \text { C. } \frac{f\left(x_{i}+a\right)-f\left(x_{i}\right)}{a} \\
& \text { D. } \frac{f\left(x_{i}\right)-f\left(x_{i}-a\right)}{a}
\end{aligned}
$$

E. More than one of these

If we choose to use:

$$
\frac{d f}{d x} \approx \frac{f\left(x_{i}+a\right)-f\left(x_{i}\right)}{a}
$$

Where are we computing the approximate derivative?
A. a
B. x_{i}
C. $x_{i}+a$
D. Somewhere else

Taking the second derivative of $f(x)$ discretely is as simple as applying the discrete definition of the derivative,

$$
f^{\prime \prime}\left(x_{i}\right) \approx \frac{f^{\prime}\left(x_{i}+a / 2\right)-f^{\prime}\left(x_{i}-a / 2\right)}{a}
$$

Derive the second derivative in terms of f.

With the approximate form of Laplace's equation:

$$
\frac{V\left(x_{i}+a\right)-2 V\left(x_{i}\right)+V\left(x_{i}-a\right)}{a} \approx 0
$$

What is a the appropriate estimate of $V\left(x_{i}\right)$?

$$
\begin{aligned}
& \text { A. } 1 / 2\left(V\left(x_{i}+a\right)-V\left(x_{i}-a\right)\right) \\
& \text { B. } 1 / 2\left(V\left(x_{i}+a\right)+V\left(x_{i}-a\right)\right) \\
& \text { C. } a / 2\left(V\left(x_{i}+a\right)-V\left(x_{i}-a\right)\right) \\
& \text { D. } a / 2\left(V\left(x_{i}+a\right)+V\left(x_{i}-a\right)\right) \\
& \text { E. Something else }
\end{aligned}
$$

To investigate the convergence, we must compare the estimate of V before and after each calculation. For our 1D relaxation code, V will be a 1D array. For the kth estimate, we can compare V_{k} against its previous value by simply taking the difference.

Store this in a variable called err. What is the type for err?
A. A single number
B. A 1D array
C. A 2D array
D. ???

The Method of Relaxation also works for Poisson's equation (i.e., when there is charge!).

$$
\text { Given, } \nabla^{2} V \approx \frac{V(x+a)-2 V(x)+V(x-a)}{a^{2}}
$$

Which equations describes the appropriate "averaging" that we must do:

$$
\begin{aligned}
& \text { A. } V(x)=\frac{1}{2}(V(x+a)-V(x-a)) \\
& \text { B. } V(x)=\frac{\rho(x)}{\varepsilon_{0}}+\frac{1}{2}(V(x+a)+V(x-a)) \\
& \text { C. } V(x)=\frac{a^{2} \rho(x)}{2 \varepsilon_{0}}+\frac{1}{2}(V(x+a)+V(x-a))
\end{aligned}
$$

SEPARATION OF VARIABLES (CARTESIAN)

