

A parallel plate capacitor is attached to a battery which maintains a constant voltage difference V between the capacitor plates. While the battery is attached, the plates are pulled apart. The electrostatic energy stored in the capacitor
A. increases.
B. decreases.
C. stays constant.

EXAM REWRITES

- Circled grade is the grade you will earn if you do the rewrite
- To earn the circled grade:
- Complete the parts that you didn't earn full credit
- Write one paragraph per problem (max 4 paragraphs) about what you didn't understand at the time of the exam, what you did to correct that understanding, and how that relates to the solution you've written up.

LAPLACE'S EQUATION

A region of space contains no charges. What can I say about V in the interior?

A. Not much, there are lots of possibilities for $V(r)$ in there
B. $V(r)=0$ everywhere in the interior.
C. $V(r)=$ constant everywhere in the interior

A region of space contains no charges. The boundary has $\mathrm{V}=0$ everywhere. What can I say about V in the interior?
A. Not much, there are lots of possibilities for $V(r)$ in there
B. $V(r)=0$ everywhere in the interior.
C. $V(r)=$ constant everywhere in the interior

For the 1D Laplace problem ($\left.\nabla^{2} V=\partial^{2} V / \partial x^{2}=0\right)$, we can choose the following ansatz:

$$
\begin{aligned}
& \text { A. } k_{0} x \\
& \text { B. } k_{0} x+k_{1} \\
& \text { C. } k_{0} x^{2}+k_{1} x+k_{2} \\
& \text { D. Can't tell }
\end{aligned}
$$

If you put a positive test charge at the center of this cube of charges, could it be in stable equilibrium?
A. Yes
B. No
C. ???

