We have a large copper plate with uniform surface charge density, σ. Imagine the Gaussian surface drawn below.
Calculate the E-field a small distance s above the conductor surface.

$$
\begin{aligned}
& \text { A. }|E|=\frac{\sigma}{\varepsilon_{0}} \\
& \text { B. }|E|=\frac{\sigma}{2 \varepsilon_{0}} \\
& \text { C. }|E|=\frac{\sigma}{4 \varepsilon_{0}} \\
& \text { D. }|E|=\frac{1}{4 \pi \varepsilon_{0}} \frac{\sigma}{s^{2}} \\
& \text { E. }|E|=0
\end{aligned}
$$

ANNOUNCEMENTS

- Exam 1 TONIGHT (7pm-9pm)
- This room
- DC out of town next Monday
- Class on Monday - Dr. Rachel Henderson

A positive charge (q) is outside a metal conductor with a hole cut out of it at a distance a from the center of the hole. What is the net electric field at center of the hole?

$$
\begin{aligned}
& \text { A. } \frac{1}{4 \pi \varepsilon_{0}} \frac{q}{a^{2}} \\
& \text { B. } \frac{-1}{4 \pi \varepsilon_{0}} \frac{q}{a^{2}} \\
& \text { C. } \frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{a^{2}} \\
& \text { D. } \frac{-1}{4 \pi \varepsilon_{0}} \frac{2 q}{a^{2}}
\end{aligned}
$$

With $\nabla \times \mathbf{E}=0$, we know that,

$$
\oint \mathbf{E} \cdot d \mathbf{l}=0
$$

If we choose a loop that includes a metal and interior vacuum (i.e., both in and inside the hole), we know that the contribution to this integral in the metal vanishes. What can we say about the contribution in the hole?
A. It vanishes also
B. E must be zero in there
C. E must be perpendicular to dl everywhere
D. \mathbf{E} is perpendicular to the metal surface
E. More than one of these

With $\nabla \times \mathbf{E}=0$, we know that,

$$
\oint \mathbf{E} \cdot d \mathbf{l}=0
$$

If we choose a loop that includes a metal and vacuum (i.e., both in and just outside of the metal), we know that the contribution to this integral in the metal vanishes. What can we say about the contribution just outside the metal?
A. It vanishes also
B. E must be zero out there
C. E must be perpendicular to dl everywhere
D. \mathbf{E} is perpendicular to the metal surface
E. More than one of these

A neutral copper sphere has a spherical hollow in the center. A charge $+q$ is placed in the center of the hollow. What is the total charge on the outside surface of the copper sphere?
(Assume Electrostatic equilibrium.)

A. Zero
B. $-q$
C. $+q$
D. $0<q_{\text {outer }}<+q$
E. $-q<q_{\text {outer }}<0$

A long coax has total charge $+Q$ on the OUTER conductor. The INNER conductor is neutral.

What is the sign of the potential difference, $\Delta V=V(c)-V(0)$, between the center of the inner conductor ($s=0$) and the outside
 of the outer conductor?
A. Positive
B. Negative
C. Zero

