We usually choose $V(r \rightarrow \infty) \equiv 0$ when calculating the potential of a point charge to be $V(r)=+k q / r$. How does the potential $V(r)$ change if we choose our reference point to be $V(R)=0$ where R is close to $+q$.
A. $V(r)$ higher than it was before
B. $V(r)$ is lower than it was before
C. $V(r)$ doesn't change (V is independent of choice of reference)

ELECTROSTATIC POTENTIAL ENERGY

Consider slowly moving a positive charge from a location of low electric potential to one of high electric potential. What is the sign of the work done by you $\left(W_{u}\right)$? What is the sign of the work done by electric field $\left(W_{f}\right)$?

$$
\begin{aligned}
& \text { A. } W_{u}<0 ; W_{f}>0 \\
& \text { B. } W_{u}<0 ; W_{f}<0 \\
& \text { C. } W_{u}>0 ; W_{f}>0 \\
& \text { D. } W_{u}>0 ; W_{f}<0
\end{aligned}
$$

Three identical charges $+q$ sit on an equilateral triangle. What would be the final $K E$ of the top charge if you released it (keeping the other two fixed)?

$$
\begin{aligned}
& \text { A. } \frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{a} \\
& \text { B. } \frac{1}{4 \pi \varepsilon_{0}} \frac{2 q^{2}}{3 a} \\
& \text { C. } \frac{1}{4 \pi \varepsilon_{0}} \frac{2 q^{2}}{a} \\
& \text { D. } \frac{1}{4 \pi \varepsilon_{0}} \frac{3 q^{2}}{a}
\end{aligned}
$$

E. Other

Three identical charges $+q$ sit on an equilateral triangle. What would be the final $K E$ of the top charge if you released all three?
A. $\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{a}$

B. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q^{2}}{3 a}$
C. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q^{2}}{a}$
D. $\frac{1}{4 \pi \varepsilon_{0}} \frac{3 q^{2}}{a}$
E. Other

Does system energy "superpose"?

That is, if you have one system of charges with total stored energy W_{1}, and a second charge distribution with W_{2}...if you superpose these charge distributions, is the total energy of the new system simply $W_{1}+W_{2}$?
A. Yes
B. No

Two charges, $+q$ and $-q$, are a distance r apart. As the charges are slowly moved together, the total field energy

$$
\frac{\varepsilon_{0}}{2} \int E^{2} d \tau
$$

A. increases
B. decreases
C. remains constant

A parallel-plate capacitor has $+Q$ on one plate, $-Q$ on the other. The plates are isolated so the charge Q cannot change. As the plates are pulled apart, the total electrostatic energy stored in the capacitor:
A. increases
B. decreases
C. remains constant.

