Two small spheres (mass, m) are attached to insulating strings (length, L) and hung from the ceiling as shown.

How does the angle (with respect ot the vertical) that the string attached to the $-q$ charge (θ_{1}) compare to that of the $-2 q$ charge $\left(\theta_{2}\right)$?

$$
\begin{aligned}
& \text { A. } \theta_{1}>\theta_{2} \\
& \text { B. } \theta_{1}=\theta_{2} \\
& \text { C. } \theta_{1}<\theta_{2} \\
& \text { D. ???? }
\end{aligned}
$$

ANNOUNCEMENTS

- CAPS Connect
- CAPS Connect is a brief consultation program that is confidential, completely free, and available to all enrolled MSU students.
- Common concerns include: Stress; Difficulty adjusting to school; Academic concerns; Family, roommate, or other relationship issues; Financial concerns; Sadness

Available drop in times

- BPS 1312 - Mondays 9-10:30am

CLASSICAL ELECTROMAGNETISM

$$
1 \AA=100,000 \mathrm{fm}
$$

$\sim 10^{8} \mathrm{~m} \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow 10^{-16} \mathrm{~m}$
24 orders of magnitude

ELECTROSTATICS

5 charges, q, are arranged in a regular pentagon, as shown. What is the E field at the center?

A. Zero
B. Non-zero
C. Really need trig and a calculator to decide

1 of the 5 charges has been removed, as shown. What's the E field at the center?

A. $+\left(k q / a^{2}\right) \hat{y}$
B. $-\left(k q / a^{2}\right) \hat{y}$
C. 0
D. Something entirely different!
E. This is a nasty problem which I need more time to solve

If all the charges live on a line (1-D), use:

$$
\lambda \equiv \frac{\text { charge }}{\text { length }}
$$

Draw your own picture. What's $\mathbf{E}(\mathbf{r})$?

To find the E-field at P from a thin line (uniform charge density λ):

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\lambda d l^{\prime}}{\mathfrak{R}^{2}} \hat{\mathfrak{R}}
$$

A. x
B. y^{\prime}
C. $\sqrt{d l^{\prime 2}+x^{2}}$
D. $\sqrt{x^{2}+y^{\prime 2}}$

E. Something else

$$
\begin{aligned}
& \mathbf{E}(\mathbf{r})=\int \frac{\lambda d l^{\prime}}{4 \pi \varepsilon_{0} \Re^{3}} \vec{\Re}, \text { so: } E_{x}(x, 0,0)=\frac{\lambda}{4 \pi \varepsilon_{0}} \int \ldots \\
& \text { A. } \int \frac{d y^{\prime} x}{x^{3}} \\
& \text { B. } \int \frac{d y^{\prime} x}{\left(x^{2}+y^{\prime 2}\right)^{3 / 2}} \\
& \text { C. } \int \frac{d y^{\prime} y^{\prime}}{x^{3}} \\
& \text { D. } \int \frac{d y^{\prime} y^{\prime}}{\left(x^{2}+y^{\prime 2}\right)^{3 / 2}}
\end{aligned}
$$

E. Something else

