Have you taken CMSE 201?

A. I have taken CMSE 201.
B. I am currently taking CMSE 201.
C. I have not taken CMSE 201, but I plan to.
D. I have not taken CMSE 201, and don't plan to.

HELP SESSIONS (1300 BPS)

- Wednesdays 7:15-8:30
- Thursdays 6:30-8:30

Either Danny or Bryan will be there for about one hour.

In a typical Cartesian coordinate system, vector \mathbf{A} lies along the $+\hat{x}$ direction and vector \mathbf{B} lies along the $-\hat{y}$ direction. What is the direction of $\mathbf{A} \times \mathbf{B}$?

$$
\begin{aligned}
& \text { A. }-\hat{x} \\
& \text { B. }+\hat{y} \\
& \text { C. }+\hat{z} \\
& \text { D. }-\hat{z} \\
& \text { E. Can't tell }
\end{aligned}
$$

In a typical Cartesian coordinate system, vector \mathbf{A} lies along the $+\hat{x}$ direction and vector \mathbf{B} lies along the $-\hat{y}$ direction. What is the direction of $\mathbf{B} \times \mathbf{A}$?

$$
\begin{aligned}
& \text { A. }-\hat{x} \\
& \text { B. }+\hat{y} \\
& \text { C. }+\hat{z} \\
& \text { D. }-\hat{z} \\
& \text { E. Can't tell }
\end{aligned}
$$

YOU DERIVE IT

Consider the radial unit vector (\hat{r}) in the spherical coordinate system as shown in the figure to the right.

Determine the z component of this unit vector in the Cartesian (x, y, z)

system as a function of r, θ, ϕ.

In cylindrical (2D) coordinates, what would be the correct description of the position vector \mathbf{r} of the point P shown at $(x, y)=(1,1)$?
A. $\mathbf{r}=\sqrt{2} \hat{s}$

B. $\mathbf{r}=\sqrt{2} \hat{s}+\pi / 4 \hat{\phi}$
C. $\mathbf{r}=\sqrt{2} \hat{s}-\pi / 4 \hat{\phi}$
D. $\mathbf{r}=\pi / 4 \hat{\phi}$
E. Something else entirely

How is the vector \mathfrak{R}_{12} related to \mathbf{r}_{1} and \mathbf{r}_{2} ?

$$
\begin{aligned}
& \text { A. } \mathfrak{R}_{12}=\mathbf{r}_{1}+\mathbf{r}_{2} \\
& \text { B. } \mathfrak{R}_{12}=\mathbf{r}_{1}-\mathbf{r}_{2} \\
& \text { C. } \mathfrak{R}_{12}=\mathbf{r}_{2}-\mathbf{r}_{1} \\
& \text { D. None of these }
\end{aligned}
$$

Coulomb's Law: $\mathbf{F}=\frac{k q_{1} q_{2}}{|\mathfrak{R}|^{2}} \hat{\mathfrak{R}}$ where \boldsymbol{R} is the relative position vector. In the figure, q_{1} and q_{2} are 2 m apart. Which arrow can represent $\hat{\mathfrak{R}}$?

A. A
B. B
C. C
D. More than one (or NONE) of the above
E. You can't decide until you know if q_{1} and q_{2} are the same or opposite charges

You are trying to compute the work done by a force, $\mathbf{F}=a \hat{x}+x \hat{y}$, along the line $y=2 x$ from $\langle 0,0\rangle$ to $\langle 1,2\rangle$. What is $d \mathbf{l}$?

A. $d l$
B. $d x \hat{x}$
C. $d y \hat{y}$
D. $2 d x \hat{x}$
E. Something else

You are trying to compute the work done by a force, $\mathbf{F}=a \hat{x}+x \hat{y}$, along the line $y=2 x$ from $\langle 0,0\rangle$ to $\langle 1,2\rangle$. Given that $d \mathbf{l}=d x \hat{x}+d y \hat{y}$, which of the following forms of the integral is correct?

$$
\begin{aligned}
& \text { A. } \int_{0}^{1} a d x+\int_{0}^{2} x d y \\
& \text { B. } \int_{0}^{1}(a d x+2 x d x) \\
& \text { C. } \frac{1}{2} \int_{0}^{2}(a d y+y d y)
\end{aligned}
$$

D. More than one is correct

