Have you taken CMSE 201?

A. I have taken CMSE 201.

- B. I am currently taking CMSE 201.
- C. I have not taken CMSE 201, but I plan to.
- D. I have not taken CMSE 201, and don't plan to.

HELP SESSIONS (1300 BPS)

- Wednesdays 7:15-8:30
- Thursdays 6:30-8:30

Either Danny or Bryan will be there for about one hour.

In a typical Cartesian coordinate system, vector \mathbf{A} lies along the $+\hat{x}$ direction and vector \mathbf{B} lies along the $-\hat{y}$ direction. What is the direction of $\mathbf{A} \times \mathbf{B}$?

> A. $-\hat{x}$ B. $+\hat{y}$ C. $+\hat{z}$ D. $-\hat{z}$ E. Can't tell

In a typical Cartesian coordinate system, vector \mathbf{A} lies along the $+\hat{x}$ direction and vector \mathbf{B} lies along the $-\hat{y}$ direction. What is the direction of $\mathbf{B} \times \mathbf{A}$?

> A. $-\hat{x}$ B. $+\hat{y}$ C. $+\hat{z}$ D. $-\hat{z}$ E. Can't tell

YOU DERIVE IT

Consider the radial unit vector (\hat{r}) in the spherical coordinate system as shown in the figure to the right.

Determine the *z* component of this unit vector in the Cartesian (x, y, z)system as a function of r, θ, ϕ .

In cylindrical (2D) coordinates, what would be the correct description of the position vector \mathbf{r} of the point P shown at (x, y) = (1, 1)?

A.
$$\mathbf{r} = \sqrt{2}\hat{s}$$

B. $\mathbf{r} = \sqrt{2}\hat{s} + \pi/4\hat{\phi}$
C. $\mathbf{r} = \sqrt{2}\hat{s} - \pi/4\hat{\phi}$
D. $\mathbf{r} = \pi/4\hat{\phi}$
E. Something else entirely

How is the vector \Re_{12} related to \mathbf{r}_1 and \mathbf{r}_2 ?

A.
$$\Re_{12} = \mathbf{r}_1 + \mathbf{r}_2$$

B. $\Re_{12} = \mathbf{r}_1 - \mathbf{r}_2$
C. $\Re_{12} = \mathbf{r}_2 - \mathbf{r}_1$
D. None of these

Coulomb's Law: $\mathbf{F} = \frac{kq_1q_2}{|\Re|^2} \hat{\Re}$ where \Re is the relative position vector. In the figure, q_1 and q_2 are 2 m apart. Which arrow **can** represent $\hat{\Re}$?

- A. A
- B. B
- C. C
- D. More than one (or NONE) of the above
- E. You can't decide until you know if q_1 and q_2 are the same or opposite charges

You are trying to compute the work done by a force, $\mathbf{F} = a\hat{x} + x\hat{y}$, along the line y = 2x from $\langle 0, 0 \rangle$ to $\langle 1, 2 \rangle$. What is $d\mathbf{I}$?

> A. dlB. $dx \hat{x}$ C. $dy \hat{y}$ D. $2dx \hat{x}$ E. Something else

You are trying to compute the work done by a force, $\mathbf{F} = a\hat{x} + x\hat{y}$, along the line y = 2x from $\langle 0, 0 \rangle$ to $\langle 1, 2 \rangle$. Given that $d\mathbf{l} = dx \ \hat{x} + dy \ \hat{y}$, which of the following forms of the integral is correct?

A.
$$\int_0^1 a \, dx + \int_0^2 x \, dy$$

B. $\int_0^1 (a \, dx + 2x \, dx)$
C. $\frac{1}{2} \int_0^2 (a \, dy + y \, dy)$
D. More than one is correct