What is the total charge for this distribution?

$$\rho(\mathbf{r}) = \sum_{k=0}^{2} (1+k) q \delta^{3}(\mathbf{r} - k\mathbf{a})$$

A. q

B. 2 q

C. 4 q

D. 6 q

E. Something else

ANNOUNCEMENTS

- Make sure you are on Slack; there's HW solutions there
 - phy481msuf2018.slack.com
- Exam 1 is coming up! October 3rd (More details next week!)
- And I will post practice exams to Slack!

A Gaussian surface which is *not* a sphere has a single charge (q) inside it, *not* at the center. There are more charges outside. What can we say about total electric flux through this surface $\oint_S \mathbf{E} \cdot d\mathbf{A}$?

A. It is q/ε_0 .

B. We know what it is, but it is NOT q/ε_0 .

C. Need more info/details to figure it out.

A Gaussian surface which is *not* a sphere has a single charge (q) inside it, *not* at the center. There are more charges outside. Can we use Gauss's Law $(\oint_S \mathbf{E} \cdot d\mathbf{A})$ to find $|\mathbf{E}|$?

A. Yes

B. No

C. Maybe?

An electric dipole (+q and -q, small distance d apart) sits centered in a Gaussian sphere.

What can you say about the flux of ${\bf E}$ through the sphere, and $|{\bf E}|$ on the sphere?

- A. Flux = 0, E = 0 everywhere on sphere surface
- B. Flux = 0, E need not be zero everywhere on sphere
- C. Flux is not zero, E = 0 everywhere on sphere
- D. Flux is not zero, E need not be zero...

SLAC (Stanford Linear Accelerator Center) is where quarks (including the charm quark), and the tauon (like a heavier electron) were discovered.

One afternoon, the beam line is struck by lightning, which gives it a uniform surface charge density $+\sigma$. Does that affect the experiment?!

What is the infinitesimal area, dA, of a small patch on a cylindrical shell centered on the z-axis?

A. $d\phi dz$

B. $s d\phi dz$

C. $s ds d\phi$

D. ds dz

E. Something else

Which way does the electric field due to the positive charges resting on the beam line point for locations *outside the pipe* far from the ends?

- A. Roughly radially outward
- B. Exactly radially outward
- C. Roughly radially inward
- D. Exactly radially inward
- E. It varies too much to tell

Which way does the electric field due to the positive charges resting on the beam line point for locations *inside the pipe* far from the ends?

- A. Exactly radially outward
- B. Exactly radially inward
- C. It varies too much to tell
- D. Something else

Consider a cube of constant charge density centered at the origin.

True or False: I can use Gauss' Law to find the electric directly above the center of the cube.

- A. True and I can argue how we'd do it.
- B. True. I'm sure we can, but I don't see how to just yet.
- C. False. I'm pretty sure we can't, but I can't say exactly why.
- D. False and I can argue why we can't do it.