Gauss' Law for magnetism, $\nabla \cdot \mathbf{B} = 0$ suggests we can generate a potential for \mathbf{B} . What form should the definition of this potential take (Φ and \mathbf{A} are placeholder scalar and vector functions, respectively)?

A.
$$\mathbf{B} = \nabla \Phi$$

B. $\mathbf{B} = \nabla \times \Phi$
C. $\mathbf{B} = \nabla \cdot \mathbf{A}$
D. $\mathbf{B} = \nabla \times \mathbf{A}$
E. Something else?

ANNOUNCEMENTS

- Danny will be out Monday
 - Norman Birge will cover class

Consider a toroid, which is like a finite solenoid connected end to end. In which direction do you expect the B field to point?

A. Azimuthally ($\hat{\phi}$ direction) B. Radially (\hat{s} direction) C. In the \hat{z} direction (perp. to page) D. Loops around the rim E. Mix of the above...

Which Amperian loop would you draw to find B "inside" the Torus (region II)?

- A. Large "azimuthal" loop
- B. Smallish loop from region II to outside (where B=0)
- C. Small loop in region II
- D. Like A, but perp to page
- E. Something entirely different

With $abla^2 \mathbf{A} = -\mu_0 \mathbf{J}$, we can write (in Cartesian coordinates): $abla^2 A_x = -\mu_0 J_x$

Does that also mean in spherical coordinates that $\nabla^2 A_r = -\mu_0 J_r$?

A. Yes B. No We can compute ${\bf A}$ using the following integral:

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r'})}{\Re} d\tau'$$

Can you calculate that integral using spherical coordinates?

A. Yes, no problem

B. Yes, r' can be in spherical, but J still needs to be in Cartesian components
C. No.

For a infinite solenoid of radius R, with current I, and n turns per unit length, which is the current density **J**?

A.
$$\mathbf{J} = nI\hat{\phi}$$

B. $\mathbf{J} = nI\delta(r - R)\hat{\phi}$
C. $\mathbf{J} = \frac{I}{n}\delta(r - R)\hat{\phi}$
D. $\mathbf{J} = \mu_0 nI\delta(r - R)\hat{\phi}$
E. Something else?!