
Consider the B-field a distance z from a current sheet (flowing in the +x-direction) in the z = 0 plane. The B-field has:

A. y-component only

B. z-component only

C. y and z-components

D. x, y, and z-components

E. Other

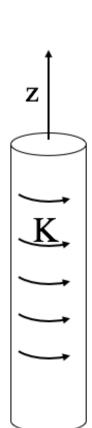
I will be in class on Wednesday.

A. Yup

B. Nope, hoss, I'll be out.

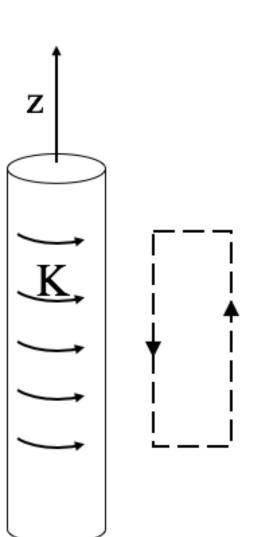
An infinite solenoid with surface current density K is oriented along the z-axis. To use Ampere's Law, we need to argue what we think $\mathbf{B}(\mathbf{r})$ depends on and which way it points.

For this solenoid, $\mathbf{B}(\mathbf{r}) =$


A.
$$B(z) \hat{z}$$

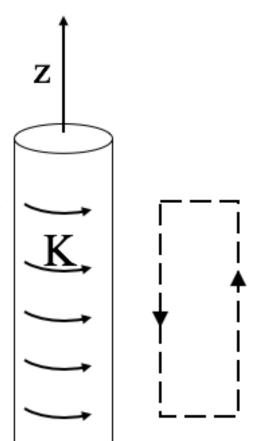
B.
$$B(z) \hat{\phi}$$

$$C. B(s) \hat{z}$$


D.
$$B(s) \hat{\phi}$$

E. Something else?

An infinite solenoid with surface current density K is oriented along the z-axis. Apply Ampere's Law to the rectangular imaginary loop in the yz plane shown. What does this tell you about B_z , the z-component of the B-field outside the solenoid?


- A. B_z is constant outside
- B. B_z is zero outside
- C. B_z is not constant outside
- D. It tells you nothing about B_z

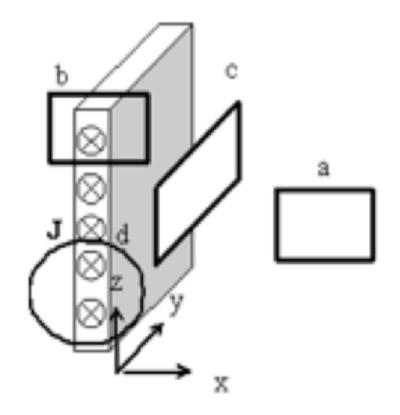
An infinite solenoid with surface current density K is oriented along the z-axis. Apply Ampere's Law to the rectangular imaginary loop in the yz plane shown. We can safely assume that $B(s \to \infty) = 0$. What does this tell you about the B-field outside the solenoid?

- B. $|\mathbf{B}|$ is zero outside
- C. $|\mathbf{B}|$ is not constant outside
- D. We still don't know anything about $|\mathbf{B}|$

What do we expect $\mathbf{B}(\mathbf{r})$ to look like for the infinite sheet of current shown below?

A. $B(x)\hat{x}$

B. $B(z)\hat{x}$


C. $B(x)\hat{z}$

D. $B(z)\hat{z}$

E. Something else

Which Amperian loop are useful to learn about B(x, y, z) somewhere?

E. More than 1