A "ribbon" (width a) with uniform surface current density Kpasses through a uniform magnetic field \mathbf{B}_{ext} . Only the length b along the ribbon is in the field. What is the magnitude of the force on the ribbon?

ANOUNCEMENTS

- No exam grades yet...sorry :(
 - By Friday...promise.
- Homework 12 is due AFTER Thanksgiving break
 - No homework due Wed. before Thanksgiving
 - But, Homework 12 is about 1.5 times longer...

To find the magnetic field ${\boldsymbol{B}}$ at P due to a current-carrying wire we

use the Biot-Savart law,

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} I \int \frac{d\mathbf{l} \times \hat{\mathbf{\Re}}}{\mathbf{\Re}^2}$$

Ρ

What is the direction of the

infinitesimal contribution $\mathbf{B}(P)$ created by current in $d\mathbf{l}$?

A. Up the page

B. Directly away from $d\mathbf{l}$ (in the plane of the page)

- C. Into the page
- D. Out of the page
- E. Some other direction

What do you expect for direction of $\mathbf{B}(P)$? How about direction of $d\mathbf{B}(P)$ generated JUST by the segment of current $d\mathbf{l}$ in red?

A. $\mathbf{B}(P)$ in plane of page, ditto for $d\mathbf{B}(P, by red)$ B. $\mathbf{B}(P)$ into page, $d\mathbf{B}(P, by red)$ into page C. $\mathbf{B}(P)$ into page, $d\mathbf{B}(P, by red)$ out of page D. $\mathbf{B}(P)$ complicated, ditto for $d\mathbf{B}(P, by red)$ E. Something else!!

What is $d\mathbf{B}_z$ (the contribution to the vertical component of \mathbf{B} from this $d\mathbf{l}$ segment?)

A.
$$\frac{dl}{z^2 + a^2} \frac{a}{\sqrt{z^2 + a^2}}$$

B.
$$\frac{dl}{z^2 + a^2}$$

C.
$$\frac{dl}{z^2 + a^2} \frac{z}{\sqrt{z^2 + a^2}}$$

D.
$$\frac{dl\cos\phi}{\sqrt{z^2 + a^2}}$$

E. Something else!

