A "ribbon" (width a) with uniform surface current density K passes through a uniform magnetic field $\mathbf{B}_{\text {ext }}$. Only the length b along the ribbon is in the field. What is the magnitude of the force on the ribbon?

A. $K B$
B. $a K B$
C. $a b K B$
D. $b K B / a$
E. $K B /(a b)$

ANOUNCEMENTS

- No exam grades yet...sorry :(
- By Friday...promise.
- Homework 12 is due AFTER Thanksgiving break
- No homework due Wed. before Thanksgiving
- But, Homework 12 is about 1.5 times longer...

To find the magnetic field \mathbf{B} at P due to a current-carrying wire we use the Biot-Savart law,

$$
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} I \int \frac{d \mathbf{l} \times \hat{\mathfrak{R}}}{\mathfrak{R}^{2}}
$$

P

What is the direction of the infinitesimal contribution $\mathbf{B}(P)$ created by current in $d \mathbf{l}$?
A. Up the page
B. Directly away from $d \mathbf{l}$ (in the plane of the page)
C. Into the page
D. Out of the page
E. Some other direction

What is the magnitude of $\frac{d \mathbf{l} \times \hat{\mathfrak{R}}}{\mathfrak{R}^{2}}$?

A. $\frac{d l \sin \theta}{\mathfrak{R}^{2}}$
B. $\frac{d l \sin \theta}{\mathfrak{R}^{3}}$
C. $\frac{d l \cos \theta}{\mathfrak{R}^{2}}$
D. $\frac{d l \cos \theta}{\mathfrak{R}^{3}}$

E. something else!

What is the value of $I \frac{d \mathbf{l} \times \hat{\mathfrak{R}}}{\mathfrak{R}^{2}}$?

A. $\frac{I y d x^{\prime}}{\left[\left(x^{\prime}\right)^{2}+y^{2}\right]^{3 / 2}} \hat{z}$
B. $\frac{I x^{\prime} d x^{\prime}}{\left[\left(x^{\prime}\right)^{2}+y^{2}\right]^{3 / 2}} \hat{y}$
C. $\frac{-I x^{\prime} d x^{\prime}}{\left[\left(x^{\prime}\right)^{3}+y^{3}\right]^{3 / 2}} \hat{y}$

D. $\frac{-I y d x^{\prime}}{\left[\left(x^{\prime}\right)^{2}+y^{2}\right]^{3 / 2}} \hat{z}$
E. Other!

What do you expect for direction of $\mathbf{B}(P)$? How about direction of $d \mathbf{B}(P)$ generated JUST by the segment of current $d \mathbf{l}$ in red?

A. $\mathbf{B}(P)$ in plane of page, ditto for $d \mathbf{B}(P$, by red $)$
B. $\mathbf{B}(P)$ into page, $d \mathbf{B}(P$, by red $)$ into page
C. $\mathbf{B}(P)$ into page, $d \mathbf{B}(P$, by red) out of page
D. $\mathbf{B}(P)$ complicated, ditto for $d \mathbf{B}(P$, by red)
E. Something else!!

What is the magnitude of $\frac{d \mathbf{l} \times \hat{\mathfrak{R}}}{\mathfrak{R}^{2}}$?

A. $\frac{d l \sin \phi}{z^{2}}$
B. $\frac{d l}{z^{2}}$
C. $\frac{d l \sin \phi}{z^{2}+a^{2}}$
D. $\frac{d l}{z^{2}+a^{2}}$
E. something else!

What is $d \mathbf{B}_{z}$ (the contribution to the vertical component of \mathbf{B} from this $d \mathbf{l}$ segment?)

$$
\begin{aligned}
& \text { A. } \frac{d l}{z^{2}+a^{2}} \frac{a}{\sqrt{z^{2}+a^{2}}} \\
& \text { B. } \frac{d l}{z^{2}+a^{2}} \\
& \text { C. } \frac{d l}{z^{2}+a^{2}} \frac{z}{\sqrt{z^{2}+a^{2}}} \\
& \text { D. } \frac{d l \cos }{\sqrt{z^{2}+a^{2}}}
\end{aligned}
$$

E. Something else!

