When there are no free charges, $\rho_{free} = 0$, in a linear dielectric material, the electric potential, V, in that material satisfies Laplace's equation?

$$\nabla^2 V = 0$$

A. True B. False C. ??? A very large (effectively infinite) capacitor has charge Q. A neutral (*homogeneous*) dielectric is inserted into the gap (and of course, it will polarize). We want to find **E** everywhere.

Which equation would you head to first?

A.
$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$$

B.
$$\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$$

C. $\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\varepsilon_0}$

D. More than one of these would work

E. Can't solve unless we know the dielectric is linear.

A very large (effectively infinite) capacitor has charge Q. A neutral (*homogeneous*) dielectric is inserted into the gap (and of course, it will polarize). We want to find **D** everywhere.

Which equation would you head to first?

A.
$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$$

B. $\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$
C. $\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\varepsilon_0}$
D. More than one of these would work

An ideal (large) capacitor has charge Q. A neutral linear dielectric is inserted into the gap. We want to find **D** in the dielectric.

$$\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$$

For the Gaussian pillbox shown, what is $Q_{free,enclosed}$?

A.
$$\sigma A$$

B. $-\sigma_B A$
C. $(\sigma - \sigma_B)A$
D. $(\sigma + \sigma_B)A$
E. Something else

An ideal (large) capacitor has charge Q. A neutral linear dielectric is inserted into the gap. We want to find **D** in the dielectric.

$$\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$$

Is **D** zero INSIDE the metal? (i.e., on the top face of our cubical Gaussian surface)

- A. It must be zero in there.
- B. It depends.
- C. It is definitely not zero in there.

An ideal (large) capacitor has charge Q. A neutral linear dielectric is inserted into the gap. We want to find **D** in the dielectric.

$$\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$$

What is $|\mathbf{D}|$ in the dielectric?

A. σ B. 2σ C. $\sigma/2$ D. $\sigma + \sigma_b$ E. Something else An ideal (large) capacitor has charge Q. A neutral linear dielectric is inserted into the gap. Now that we have **D** in the dielectric, what is **E** inside the dielectric?

A. $\mathbf{E} = \mathbf{D}\varepsilon_0\varepsilon_r$ B. $\mathbf{E} = \mathbf{D}/\varepsilon_0\varepsilon_r$

$$\mathbf{C} \cdot \mathbf{E} = \mathbf{D} \varepsilon_0$$

D. $\mathbf{E} = \mathbf{D}/\varepsilon_0$

E. Not so simple! Need another method