If you put a polarizable material (a dielectric) in an external field \mathbf{E}_e , it polarizes, adding a new field, \mathbf{E}_p (from the bound charges). These superpose, making a total field, \mathbf{E}_T . What is the vector equation relating these three fields?

$$A. \mathbf{E}_T + \mathbf{E}_e + \mathbf{E}_p = 0$$

$$B. \mathbf{E}_T = \mathbf{E}_e - \mathbf{E}_p$$

$$\mathbf{C}.\mathbf{E}_T = \mathbf{E}_e + \mathbf{E}_p$$

$$D. \mathbf{E}_T = -\mathbf{E}_e + \mathbf{E}_p$$

E. Something else

ANNOUNCEMENTS

- Exam 2 (Wednesday, November 8th 7-9pm)
- Covers through Homework 9 (solutions posted after class)
- "Comprehensive" exam (need to remember old stuff)
- 1 sheet of your own notes; formula sheet posted

WHAT'S ON EXAM 2?

- Using Legendre polynomials and separation of variables in spherical coordinates, solve for the potential and distribution of charge in a boundary value problem
- Using the multipole expansion, find the approximate form of the potential for a distribution of charge
- Determine the bound charge in a material with a given polarization
- Find the electric potential for a 1D Laplace problem and explain how you would determine it using the method of relaxation
- (BONUS) Solve a 3D Laplace problem in Cartesian coordinates

A solid non-conducting dielectric rod has been injected ("doped") with a fixed, known charge distribution $\rho(s)$. (The material responds, polarizing internally.)

ρ**(s)**

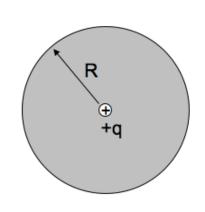
When computing D in the rod, do you treat this $\rho(s)$ as the "free charges" or "bound charges"?

- A. "free charge"
- B. "bound charge"
- C. Neither of these $\rho(s)$ is some combination of free and bound
- D. Something else.

We define "Electric Displacement" or "D" field, $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$

If you put a dielectric in an **external** field, it polarizes, adding a new **induced** field (from the bound charges). These superpose, making a **total** electric field. Which of these three E fields is the "E" in the formula for D above?

A. \mathbf{E}_{ext}


B. $\mathbf{E}_{induced}$

 $\mathbf{C.}\,\mathbf{E}_{tot}$

We define $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$, with

$$\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$$

A point charge +q is placed at the center of a dielectric sphere (radius R). There are no other free charges anywhere. What is $|\mathbf{D}(r)|$?

- A. $q/(4\pi r^2)$ everywhere
- B. $q/(4\varepsilon_0\pi r^2)$ everywhere
- C. $q/(4\pi r^2)$ for r < R, but $q/(4\varepsilon_0\pi r^2)$ for r > R
- D. None of the above, it's more complicated
- E. We need more info to answer!

For linear dielectrics the relationship between the polarization, \mathbf{P} , and the total electric field, \mathbf{E} , is given by:

$$\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}$$

where X_e is typically a known constant. Think about what happens if (1) $X_e \to 0$ or if (2) $X_e \to \infty$. What do each of these limits describe?

- A. (1) describes a metal and (2) describes vacuum
- B. (1) describes vacuum and (2) describes a metal
- C. Any material can gave either $X_e \to 0$ or $X_e \to \infty$