Consider a cylinder of radius a and height b that has it base at the origin and is aligned along the z-axis. The polarization of this cylinder is "baked in" and can be modeled using

$$
\mathbf{P}=P_{0}\left(\frac{z}{b}\right) \hat{z}
$$

Determine the total dipole moment of this cylinder:
A. $P_{0} \pi a^{2} b \hat{z}$
B. $\frac{1}{2} P_{0} \pi a^{2} b \hat{z}$
C. $P_{0} 2 \pi a b^{2} \hat{z}$
D. $\frac{1}{2} P_{0} \pi a^{2} b \hat{z}$
E. Something else

EXAM 1 INFORMATION

- Covers through polarization (up to Ch 4.2.3)
- Emphasizes material since Exam 1
- But don't forget Exam 1 material!
- Specifics on Wednesday

In the following case, is the bound surface and volume charge zero or nonzero?

Physical dipoles

idealized dipoles

$$
\begin{aligned}
& \text { A. } \sigma_{b}=0, \rho_{b} \neq 0 \\
& \text { B. } \sigma_{b} \neq 0, \rho_{b} \neq 0 \\
& \text { C. } \sigma_{b}=0, \rho_{b}=0 \\
& \text { D. } \sigma_{b} \neq 0, \rho_{b}=0
\end{aligned}
$$

In the following case, is the bound surface and volume charge zero or nonzero?

$$
\begin{aligned}
& \text { A. } \sigma_{b}=0, \rho_{b} \neq 0 \\
& \text { B. } \sigma_{b} \neq 0, \rho_{b} \neq 0 \\
& \text { C. } \sigma_{b}=0, \rho_{b}=0 \\
& \text { D. } \sigma_{b} \neq 0, \rho_{b}=0
\end{aligned}
$$

A VERY thin slab of thickness d and area A has volume charge density $\rho=Q / V$. Because it's so thin, we may think of it as a surface charge density $\sigma=Q / A$.

The relation between ρ and σ is:

$$
\begin{aligned}
& \text { A. } \sigma=\rho \\
& \text { B. } \sigma=\rho d \\
& \text { C. } \sigma=\rho / d \\
& \text { D. } \sigma=V \rho \\
& \text { E. } \sigma=\rho / V
\end{aligned}
$$

Are ρ_{b} and σ_{b} due to real charges?

A. Of course not! They are as fictitious as it gets! B. Of course they are! They are as real as it gets!
C. I have no idea

A dielectric slab (top area A, height h) has been polarized, with $\mathbf{P}=P_{0}$ in the $+z$ direction. What is the surface charge density, σ_{b}, on the bottom surface?
A. 0
B. $-P_{0}$
C. P_{0}
D. $P_{0} A h$
E. $P_{0} A$

A dielectric sphere is uniformly polarized,

$$
\mathbf{P}=+P_{0} \hat{z}
$$

What is the surface charge density?
A. 0
B. Non-zero Constant
C. constant* $\sin \theta$
D. constant ${ }^{*} \cos \theta$
E. ??

A dielectric sphere is uniformly polarized,

$$
\mathbf{P}=+P_{0} \hat{z}
$$

What is the volume charge density?
A. 0
B. Non-zero Constant
C. Depends on r, but not θ
D. Depends on θ, but not r
E. ?

