Two charges are positioned as shown to the left. The relative position vector between them is \mathbf{d}. What is the dipole moment of this configuration?

$$
\sum_{i} q_{i} \mathbf{r}_{i}
$$

A. $+q \mathbf{d}$
B. $-q \mathbf{d}$
C. Zero
D. None of these; it's more complicated than before!

For a dipole at the origin pointing in the z-direction, we have derived:

$$
\mathbf{E}_{d i p}(\mathbf{r})=\frac{p}{4 \pi \varepsilon_{0} r^{3}}(2 \cos \theta \hat{\mathbf{r}}+\sin \theta \hat{\theta})
$$

For the dipole $\mathbf{p}=q \mathbf{d}$ shown, what does the formula predict for the direction of $\mathbf{E}(\mathbf{r}=0)$?
A. Down
B. Up

C. Some other direction
D. The formula doesn't apply

IDEAL VS. REAL DIPOLE

