Given the two diff. eq's :

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=C_{1} \quad \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=C_{2}
$$

where $C_{1}+C_{2}=0$. Given the boundary conditions in the figure, which coordinate should be assigned to the negative constant (and thus the sinusoidal solutions)?
A. x
B. y
C. $C_{1}=C_{2}=0$ here
D. It doesn't matter.

Given the two diff. eq's :

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=C_{1} \quad \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=C_{2}
$$

where $C_{1}+C_{2}=0$. Given the boundary conditions in the figure, which coordinate should be assigned to the negative constant (and thus the sinusoidal solutions)?
A. x
B. y
C. $C_{1}=C_{2}=0$ here
D. It doesn't matter.

When does $\sin (k a) e^{-k y}$ vanish?

$$
\begin{aligned}
& \text { A. } k=0 \\
& \text { B. } k=\pi /(2 a) \\
& \text { C. } k=\pi / a \\
& \text { D. A and C } \\
& \text { E. A, B, C }
\end{aligned}
$$

Suppose $V_{1}(r)$ and $V_{2}(r)$ are linearly independent functions which both solve Laplace's equation, $\nabla^{2} V=0$. Does $a V_{1}(r)+b V_{2}(r)$ also solve it (with a and b constants)?
A. Yes. The Laplacian is a linear operator
B. No. The uniqueness theorem says this scenario is impossible, there are never two independent solutions!
C. It is a definite yes or no, but the reasons given above just aren't right!
D. It depends...

What is the value of $\int_{0}^{2 \pi} \sin (2 x) \sin (3 x) d x$?
A. Zero
B. π
C. 2π
D. other
E. I need resources to do an integral like this!

EXACT SOLUTIONS:

$$
V(x, y)=\sum_{n=1}^{\infty} \frac{4 V_{0}}{n \pi} \frac{1}{\cosh \left(\frac{n \pi}{2}\right)} \cosh \left(\frac{n \pi x}{a}\right) \sin \left(\frac{n \pi y}{a}\right)
$$

APPROXIMATE SOLUTIONS:

(1 TERM; 20 TERMS)

SEPARATION OF VARIABLES (SPHERICAL)

Given $\nabla^{2} V=0$ in Cartesian coords, we separated $V(x, y, z)=X(x) Y(y) Z(z)$. Will this approach work in spherical coordinates, i.e. can we separate

$$
V(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi) ?
$$

A. Sure.
B. Not quite - the angular components cannot be isolated, e.g., $f(r, \theta, \phi)=R(r) Y(\theta, \phi)$
C. It won't work at all because the spherical form of Laplace's Equation has cross terms in it (see the front cover of Griffiths)

