The Method of Relaxation also works for Poisson's equation (i.e., when there is charge!).

$$
\text { Given, } \nabla^{2} V \approx \frac{V(x+a)-2 V(x)+V(x-a)}{a^{2}}
$$

Which equations describes the appropriate "averaging" that we must do:

$$
\begin{aligned}
& \text { A. } V(x)=\frac{1}{2}(V(x+a)-V(x-a)) \\
& \text { B. } V(x)=\frac{\rho(x)}{\varepsilon_{0}}+\frac{1}{2}(V(x+a)+V(x-a)) \\
& \text { C. } V(x)=\frac{a^{2} \rho(x)}{2 \varepsilon_{0}}+\frac{1}{2}(V(x+a)+V(x-a))
\end{aligned}
$$

ANNOUNCEMENTS

- Exam 1 is graded
- Should have received email this morning with updated grades
- Danny out of town Friday
- Norman Birge will substitute

EXAM 1 GRADES

HOMEWORK AVERAGES

PLEASE DO YOUR HOMEWORK

SEPARATION OF VARIABLES (CARTESIAN)

Say you have three functions $f(x), g(y)$, and $h(z) \cdot f(x)$ depends on x but not on y or $z . g(y)$ depends on y but not on x or $z . h(z)$ depends on z but not on x or y. If $f(x)+g(y)+h(z)=0$ for all x, y, z, then:
A. All three functions are constants (i.e. they do not depend on x, y, z at all.)
B. At least one of these functions has to be zero everywhere.
C. All of these functions have to be zero everywhere.
D. All three functions have to be linear functions in x, y, or z respectively (such as $f(x)=a x+b$)

If our general solution contains the function,

$$
X(x)=A e^{\sqrt{c} x}+B e^{-\sqrt{c} x}
$$

What does our solution look like if $c<0$; what about if

$$
c>0 ?
$$

A. Exponential; Sinusoidal
B. Sinusoidal; Exponential
C. Both Exponential
D. Both Sinusoidal
E. ???

Our example problem has the following boundary

 conditions:$$
\begin{aligned}
& \text { - } V(0, y>0)=0 ; V(a, y>0)=0 \\
& \text { - } V\left(x_{0 \rightarrow a}, y=0\right)=V_{0} ; V(x, y \rightarrow \infty)=0
\end{aligned}
$$

If $X^{\prime \prime}=c_{1} X$ and $Y^{\prime \prime}=c_{2} Y$ with $c_{1}+c_{2}=0$, which is constant is positive?
A. c_{1}
B. c_{2}
C. It doesn't matter either can be

