

A parallel plate capacitor is attached to a battery which maintains a constant voltage difference V between the capacitor plates. While the battery is attached, the plates are pulled apart. The electrostatic energy stored in the capacitor
A. increases.
B. decreases.
C. stays constant.

I feel that Exam 1 was a fair assessment.

A. Strongly Agree
B. Agree
C. Neither Agree/Disagree
D. Disagree
E. Strongly Disagree

I feel that Exam 1 was aligned with what we have been doing (in class and on homework).
A. Strongly Agree
B. Agree
C. Neither Agree/Disagree
D. Disagree
E. Strongly Disagree

LAPLACE'S EQUATION

A region of space contains no charges. What can I say about V in the interior?
A. Not much, there are lots of possibilities for $V(r)$ in there
B. $V(r)=0$ everywhere in the interior.
C. $V(r)=$ constant everywhere in the interior

A region of space contains no charges. The boundary has $\mathrm{V}=0$ everywhere. What can I say about V in the interior?
A. Not much, there are lots of possibilities for $V(r)$ in there B. $V(r)=0$ everywhere in the interior.
C. $V(r)=$ constant everywhere in the interior

If you put a positive test charge at the center of this cube of charges, could it be in stable equilibrium?
A. Yes
B. No
C. ???

